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Abstract

We develop a general equilibrium model in which firms choose how scalable their production
technologies are. More scalable technologies make it easier for firms to expand output but are less
effective at small scale. In equilibrium, more productive firms adopt more scalable technologies
and grow disproportionately large. As a result, the tail of the size distribution becomes thicker
and, as resources reallocate to the most productive producers, GDP increases. Over the long-run,
as aggregate productivity rises, firms adopt more scalable technologies, which lowers input prices,
leading to further increases in scalability. Through this supply-chain amplification process,
endogenous returns to scale raise the growth rate of GDP. A calibrated version of the model
shows that these effects are quantitatively significant. We also document support for the model’s

predictions in firm-level data.
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1 Introduction

At the turn of the twentieth century, the automobile was a luxury good, carefully assembled by
skilled craftsmen. State-of-the-art models like the 1909 Cadillac Model Thirty were already built
with interchangeable parts, yet their production remained artisanal and their price prohibitively
high. Just a few years later, Henry Ford’s Highland Park plant was producing a Model T every
93 minutes. By adopting the moving assembly line, Ford had made the decision to reorganize
production to increase its returns to scale. The benefit was a large decline in production costs that
transformed the automobile into a mass-market good.

Ford’s story is not unique. Indeed, in his seminal work, Chandler (1990) argues that the adoption
of processes, organizational structures and technologies designed to achieve higher economies of scale
was a key driver of modern economic growth. This historical perspective suggests that scalability
is not a fixed constraint but a dimension of technology that firms actively manage. Building on
this insight, we explore the idea that returns to scale are endogenous equilibrium objects driven by
incentives, and study their implications for the firm size distribution, the response of the economy
to shocks, and long-run growth.

To do so, we develop a multi-sector general equilibrium model with endogenous returns to scale.
Within each sector, a continuum of firms with heterogenous productivity produce a common good
using labor and intermediate inputs. Importantly, firms in our setup are free to choose their returns
to scale subject to a technological trade-off: achieving larger scale economies comes at a cost in
terms of productivity. As a result, while more scalable technologies make it easier for firms to
expand output, they are less effective at small scale.

The existence of a trade-off between scale and productivity is well documented. Chandler (1977)
describes how the historical shift from small, artisanal producers to large, integrated enterprises
depended on costly investment in a new “technology of organization.” Achieving and managing large
scale required the creation of professional hierarchies and complex administrative systems. While
this “visible hand” of management enabled firms to coordinate large-scale production, it introduced
administrative overhead and reduced the operational flexibility that smaller firms enjoyed.

Our analysis of the model begins with the individual firm’s decisions in partial equilibrium.
Following McKenzie (1959), we interpret decreasing returns to scale as arising from a fixed en-
trepreneurial factor. A firm’s choice of returns to scale therefore reflects a trade-off between this
constrained in-house factor and the variable bundle of labor and intermediate inputs. We show
that the optimal degree of scalability is reached when the marginal productivity loss from expand-
ing scalability exactly offsets the cost savings from relying less on the fixed factor. This condition
dictates how firms adapt to their environment: any change that pushes the firm to expand puts
pressure on the fixed factor and encourages the adoption of a technology with higher returns to

scale. Consequently, higher productivity, higher output prices, or cheaper intermediate inputs all



induce the firm to adopt a more scalable, input-intensive production function.

This mechanism generates a “double blessing” for the most productive firms. Their intrinsic
productivity (the first blessing) naturally leads to larger size and higher profits. This expansion, in
turn, tightens the constraint imposed by the fixed entrepreneurial factor, creating an incentive to
adopt more scalable technologies (the second blessing), which lead to a further increase in size. This
disproportionate growth creates superstar firms and a thick Pareto tail for the firm-size distribution.

Despite heterogeneity in returns to scale, firms in a sector can be aggregated in a tractable
way. Because of free entry, production exhibits constant returns to scale at the sector level, with
firm-level scalability decisions affecting the importance of labor and intermediate inputs in sectoral
production. Returns to scale decisions also manifest themselves in sectoral productivity. We show
that by allowing high-productivity firms to grow larger, endogenous returns to scale increase sectoral
productivity and, through that channel, the level of GDP.

The model admits a unique and efficient competitive equilibrium, which can be characterized as
the solution to a social planner’s problem. We use this characterization to study the determinants
of returns to scale in general equilibrium. We find that any shock that lowers the relative cost of
intermediate inputs induces firms to adopt more scalable technologies. For instance, a productivity
improvement in an upstream sector reduces input costs for downstream customers, encouraging
them to increase their scalability. This shift toward greater scalability implies a heavier reliance on
intermediate inputs, which raises the Domar weights of upstream suppliers. Consequently, sectors
experiencing productivity gains become more central to the economy, amplifying their impact on
GDP. Through this channel, endogenous returns to scale magnify the benefits of positive shocks.
Symmetrically, the same mechanism dampens the adverse impact of negative shocks, as firms sub-
stitute away from intermediate inputs and reduce the importance of the affected sectors.

Endogenous returns to scale also matter for long-run growth. With recurrent productivity
improvements, firms continuously adopt more scalable technologies. This leads to an increase in
Domar weights, making subsequent productivity gains even more impactful. As this process unfolds,
the economy enters an acceleration phase where the GDP growth rate rises over time, eventually
converging to a long-run rate strictly higher than in a fixed-technology economy. In our model,
growth is therefore driven by the interaction between exogenous innovation and endogenous scaling
decisions. A back-of-the-envelope calculation suggests that this mechanism can have a significant
impact on long-run growth.

To study how policy interventions and market frictions affect returns to scale decisions, we
extend our baseline model to include wedges, such as sales taxes or tariffs on intermediate inputs.
We find that such distortions, by incentivizing firms to shrink, lead to the adoption of inefficiently
low returns to scale. In this distorted equilibrium, productivity shocks have a first-order effect on
welfare by altering the economy’s structure. A positive productivity shock, for instance, not only

increases output directly but also acts as a corrective force: by lowering input costs, it encourages



firms to increase their scalability, moving the economy’s production technology closer to the efficient
benchmark.

We use detailed data covering the near-universe of firms in Spain to test the core predictions
of the model. Consistent with our theory, we document a strong positive correlation between firm
productivity, size, and returns to scale. We also find evidence supporting the model’s input-cost
mechanism. By exploiting variation in import tariffs, we show that firms more exposed to costlier
intermediate inputs tend to reduce their returns to scale, in line with the model’s prediction. Fi-
nally, cross-country patterns corroborate these mechanisms at the aggregate level. Countries where
returns to scale are more responsive to productivity—indicating a stronger endogenous scalability
mechanism—exhibit higher income per capita. This suggests that endogenous scalability decisions
may play a role in long-run economic development.

Finally, to quantify the importance of our mechanism, we calibrate the model to the Spanish
economy. We find that endogenous returns to scale are a first-order determinant of economic perfor-
mance. Eliminating the ability of firms to adjust their scalability reduces the level of GDP by nearly
12% and lowers the long-run growth rate of the economy by 0.8 percentage points. Crucially, these
gains are driven by the capacity of high-productivity firms to adopt more scalable technologies. To
illustrate this, we examine the impact of size-dependent distortions that are particularly detrimental
to large firms. Constructing wedges as in Hsieh and Klenow (2009), we confirm that larger firms
face higher effective distortions in the data. We find that removing these wedges yields welfare gains
that are more than twice as large in our model compared to a standard framework. This highlights
that policies burdening large firms are particularly costly when they stifle the adoption of high-scale

technologies.

Literature review

Some early work emphasizes the importance of changing returns to scale for economic outcomes.
Kuznets (1973) argues that the rise of large-scale enterprises reflected an adaptive process through
which firms learned to coordinate production and distribution over expanding markets. Chandler
(1977) documents how managerial hierarchies and integrated production systems enabled firms to
realize “economies of scale and scope.” These classic accounts emphasized the importance of changes
in returns to scale for growth. Our work formalizes that idea in a general equilibrium framework.!

Since we focus on the aggregate impact of endogenous scalability we adopt a holistic approach
and do not take a stance on the underlying margins that firms use to adjust their returns to scale
(several are likely at work). In contrast, some recent studies have focused on specific mechanisms.

Argente et al. (2025) propose a model of multi-product firms in which standardization can increase

LOur paper also relates to classic models of firm heterogeneity and dynamics such as Lucas (1978) and Hopenhayn
(1992). Typical work in this literature assumes that returns to scale are exogenous. We also relate to a literature
that studies the internal organization of firms as in Garicano (2000) and Garicano and Rossi-Hansberg (2006).



a firm’s returns to scale. Like us, they find that endogenous scalability can lead to fat-tailed firm-
size distributions. Engbom et al. (2025) build a model in which entrepreneurs can professionalize
administrative tasks by hiring white-collar workers, thereby relaxing constraints on their returns to
scale. They find that the scarcity of skilled labor in developing countries limits this reorganization,
and that increasing the aggregate supply of skills can explain two-thirds of the shift into large firms
observed during development. Also in the development literature, Gottlieb et al. (2025) propose a
model in which firms can choose between a high and a low returns to scale technologies. They use
the model to explain empirical patterns related to the effect of skill endowments on the firm size
distribution.

Smirnyagin (2023) proposes a business cycle model with financial frictions in which firms can
choose between two returns to scale levels. Focusing on long-run patterns, Lashkari et al. (2024)
document that the decline in IT prices led to an increase in returns to scale in France. To explore the
implications of this finding, they propose a model with non-homothetic production in which returns
to scale can vary with input factors. Hubmer et al. (2025) use administrative data from Canada
and the United States to document that larger firms operate technologies with higher returns to
scale—a finding that is consistent with our model. They explore the implications of these patterns
in an entrepreneurial model with fixed heterogenous returns to scale and financial frictions.?

A distinguishing feature of our work is that we study the impact of input-output linkages on
scalability decisions. In doing so, we identify a novel channel through which adjustments in returns
to scale propagate through supply chains, reshaping Domar weights throughout the economy. This
channel has important implications for the macroeconomic impact of endogenous scalability and is
essential for our long-run growth results.

Our work also relates to different strands of the production network literature (Long and Plosser,
1983; Acemoglu et al., 2012). As in Baqaee and Farhi (2019a), Hulten’s (1978) theorem only provides
a first-order approximation to the economy’s response to shocks in our model. We also build on
previous work that studies the role of wedges in network economies (Jones, 2011; Baqgaee and Farhi,
2019b; Liu, 2019; Bigio and La’O, 2020). Finally, we relate to a literature on production networks
that treats the production function as endogenous (Oberfield, 2018; Acemoglu and Azar, 2020;
Kopytov et al., 2024a,b). We share with this literature the assumption that firms have control
over their production technologies. However, in this literature, returns to scale are always constant.
Endogenizing returns to scale yields novel predictions for the firm size distribution and has important

aggregate implications.

2In many models, firms must pay a fixed cost to operate, and this fixed cost therefore influences the average
returns to scale of the firm. In contrast, our setup is interested in marginal returns to scale, which capture how a
marginal increase in size affects the marginal cost of production.



2 A model of endogenous returns to scale

We introduce endogenous returns to scale into an otherwise standard multisector economy. Each
sector produces a differentiated good that can be used for final consumption and as an intermediate
input. Within each sector, there is a continuum of firms that differ in terms of their productivity. A
representative household supplies labor, owns all firms, and consumes the final good. Importantly,
firms choose their returns to scale in order to maximize profits. Changes in the environment can

therefore affect individual returns to scale and, through that channel, macroeconomic aggregates.

2.1 Production technology

There are N goods, each produced by a different sector. Each sector 4 consists of a continuum
of competitive firms whose mass M; is determined by a free-entry condition. Upon paying x; > 0
units of labor to enter, a firm [ draws a random productivity level g;; ~ iid N/ (,ui, 022) from a normal
distribution. The firm can then produce using a Cobb-Douglas technology but, crucially, it can
choose how scalable that technology is. Specifically, if it selects returns to scale 0 < n; < 1, firm {’s

output is given by

il

N
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j=1
where L; is labor, Xy = (Xj14,..., Xin,) is a vector of intermediate inputs, and ¢ (7;;) is a nor-

malization term to simplify subsequent expressions.? We assume that operating technologies with
higher returns to scale is costly, so that the productivity shifter A; (n;;) is strictly decreasing. This
captures the idea that achieving greater scalability often requires more complex processes, incurs
significant coordination and communication costs, and demands more managerial attention (Chan-
dler, 1977). For tractability, we impose that A; is smooth, strictly log-concave and that A; (n;) — 0

as n;; — 1.

2.2 Firm problem

To explore what drives a firm’s returns to scale decision, we first analyze its problem in partial
equilibrium. A firm [ in sector ¢ simultaneously chooses its returns to scale n; and variable inputs

(labor and intermediates) to maximize profits:

N
L = A P,F; (Liy, Xa,mi) — WLy — ZPinj,l- (2)
il s 4ql <Nl 3
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e 6 = (15,0

below. Here, this term can be subsumed in A; (7).

5 (na)"9 (1 — n)' ™" to simplify the unit cost expression



where W is the wage and P; is the price of good j. Solving this problem, we derive the firm’s

marginal cost of production as a function of its output @);; and its chosen technology ;.
Lemma 1. The firm’s marginal cost of production Ay is given by

1 .
i = ————— H L 3
il esilAZ' (Thl) 7 1l 9 ( )
where H; := Wlfzyzl ij H;VZI Pja” 1s the price of the variable input bundle used by firms in sector

i, and
ILi; = (1 — na) MiQu (4)

is profits.*

As usual, the firm’s marginal cost \; decreases with productivity and increases with input
prices. The wage and the price of intermediate inputs, for instance, affect \;; through the variable
input bundle price H;. Crucially, the firm’s profits II;; also show up as an input price in (3). To
understand why, recall that we can interpret a decreasing-returns production function as a constant-
returns technology with an additional fixed entrepreneurial factor in unit supply (McKenzie, 1959).
Under this interpretation, profits I1;; are simply the payment to that input. As output ); increases,
the pressure on this fixed factor rises, increasing its shadow cost II; and, in turn, driving up the
marginal cost \;;.

Returns to scale n; play a dual role in shaping marginal costs. Higher returns to scale lower
baseline productivity through A; (n;), but they also increase the weight of the variable bundle
(labor and intermediate) relative to the fixed factor. Through this second channel, 7; determines
how steeply the marginal cost rises with output. Figure 1 illustrates this trade-off by plotting \;; as
a function of @;; for high and low values of 7;;. The high-n technology offers greater scalability and
thus a flatter marginal cost curve, allowing the firm to increase its size with only a small increase
in its marginal cost. This makes it particularly effective for large firms. However, because it incurs
a large productivity penalty A;, this technology is inefficient at small scales. In contrast, the low-
71 technology benefits from high baseline productivity A (n;;), making it the preferred choice for
small-scale production.

This leads to the key sorting mechanism of our model. While adopting a technology with higher
returns to scale is costly in terms of baseline productivity, firms that choose these technologies
are, in equilibrium, more productive overall. This is because only firms with a sufficiently high
idiosyncratic productivity draw ; find it optimal to operate at the large scale necessary to make
a high-n technology worthwhile. In Section 6, we will show that this positive correlation between
productivity and returns to scale is supported by the data. Finally, profit maximization implies

that the firm selects output ;; so that its marginal cost \;; equals the price of its good P;.

4All proofs are in Appendix C.



Figure 1: The trade-off between baseline productivity and returns to scale.
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2.3 Choosing returns to scale

Building on these insights, we can characterize the optimal returns to scale decision of the firm.

Lemma 2. At an interior solution, the firm chooses its returns to scale ny € (0,1) according to

dai (na) _ log H; — log I, o

dni
where a; (ny) = log A; (n:).

This expression describes the core trade-off behind the returns to scale choice. It is better
understood as the derivative of the log of \;;, given by (3), with respect to n;. When increasing 7;
at the margin, the firm shifts its input mix away from the fixed entrepreneurial factor, whose cost
is II;;, toward the variable input bundle, whose cost is H;. The right-hand side of (5) captures the
marginal change in cost associated with that shift. The firm balances that change in cost with any
loss in TFP associated with the higher returns to scale, as reflected by the left-hand side of (5).

From (5), we can determine how 7; responds to changes in the economic environment. The top
two panels of Figure 2 illustrate the forces involved. Since a; is concave, its derivative is decreasing.
Therefore, any change that increases profits II;;—such as a higher output price P; or a better
productivity draw €;—makes the fixed factor more expensive, pushing the firm to adopt a higher
1;1- Conversely, an increase in the variable input cost H;, as it incentivizes the firm to rely more on

its fixed factor, lowers the optimal ;. The following lemma formalizes this intuition.



Lemma 3. At an interior solution, the returns to scale parameter n; satisfies®

—1 —1
dnit dni d*a; dnit d’a;
deq  dlog P, [( 0y o dogm, | gg] <

This result highlights that the elasticities of the returns to scale with respect to prices and

productivity depend on 7;; itself and on the concavity of a;.

Figure 2: Impact of productivity €;; and input prices H; on the firm
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The endogenous choice of scalability also has crucial implications for the output @);; of the firm.

Lemma 4. At an interior solution, the elasticity of output Q; with respect to productivity €; is

given by
dlogQ; 1 1 dna

> 0.
deg 1 —ny 1 —mi dey
——

Fized n effect

5When increasing P;, we keep the price of the variable input bundle constant to distinguish the two channels that
affect 7.



In addition, the elasticities of output Q; with respect to prices are given by

dlog Q; i 1 dn; dlog Q; i 1 dn;
gQu _ M n M 0. and gQa _ M n m_
dlog P; 1—mny  1—mnydlogF; dlog H; 1 —mnu 1 —mny dlog H;
—— ———
Fized n effect Fized n effect

Furthermore, the impact of a change in e, log P; or log H; on log Q; is amplified because of the

endogenous response of ;.

With fixed returns to scale, productivity and prices affect output @;; through standard channels,
captured by the first terms in the expressions of Lemma 4. Higher productivity ;;, for instance,
allows the firm to produce larger quantities before its marginal cost reaches the price P;. The mag-
nitude of this response depends on returns to scale: a high-n firm is more sensitive to productivity
and prices than a low-n firm.

In addition to this fixed-n mechanism, Lemma 4 reveals an additional mechanism at work when
returns to scale are endogenous. Following an increase in productivity &;;, the firm not only expands
to exploit its lower marginal cost but also increases its returns to scale to better accommodate the
higher production volume. This amplification mechanism creates a superstar effect, causing high-
productivity firms to grow disproportionately large. A similar mechanism operates in response to
price changes.

The bottom two panels of Figure 2 illustrate these forces. With exogenous returns to scale
(dashed orange lines), log Q;; varies linearly with ¢; and log H;, as in standard models. In contrast,
with endogenous returns to scale (blue lines), the response is convex: productivity and input prices
have an outsized impact on output.

This amplification mechanism has important implications for the firm distribution. To explore

them transparently, it helps to specialize the returns to scale cost function a;.°

Assumption 1. The TFP shifter function A; takes the form

Vi
ai (i) = =7 o (6)

where the parameter ~; > 03/2 governs the productivity cost of increasing n;; in sector i.

We also define the effective productivity dispersion ¢; := o2/ (2v;) as a measure of the dispersion

in sector ¢ relative to the cost of adjusting 7;;. This parameter plays an important role in our analysis.

6Ass.umption 1 imposes that A; (n:) satisfies an Inada condition as 7;; — 1, but not as n;; — 0. Since productivity
shocks g;; are unbounded, some firms with very low ¢;; might choose n; ¢ (0,1). In any reasonable calibrations of
the model, these firms are very small and their mass is negligible. It is straightforward to truncate the distribution
of €;; to guarantee that 0 < 7;; < 1 for all firms, but this makes the analysis burdensome without any new interesting
insights. In the main text, we therefore do not impose such a truncation but we do explore a version of the model
with truncated productivity in Appendix D.1. We show that aggregate quantities in this alternative model converge
to their main-text counterparts as the mass of firms picking 7, ¢ (0,1) shrinks. In the quantitative section of the
paper, we verify that the mass of such firms is indeed small.

10



The constraint ~; > a? /2 in Assumption 1 implies that 0 < ¢; < 1.7

With that assumption, we can describe the impact of endogenous returns to scale on the tail of

the firm-size distribution.

Proposition 1. Suppose that Assumption 1 holds. Without endogenous returns to scale, the dis-

tribution of Qu in sector i is log-normal. With endogenous returns to scale, the right tail of the

distribution of Q; behaves like a Pareto distribution with tail index 1/¢;, in the sense that

1
log (P (Qir > q)) ~ ——loggq, as g — oc.

)

In the absence of endogenous scalability, all firms within a sector operate with identical returns
to scale. Consequently, the distribution of firm output simply mirrors that of the underlying produc-
tivity distribution and is log-normal. In contrast, when returns to scale are endogenous, the most
productive firms choose higher returns to scale. This stretches the right tail of the distribution,
making it thick and Pareto-like. Proposition 1 also shows that the thickness of the tail depends
on the effective productivity dispersion ;. When productivity shocks are highly dispersed (large

02-2) or scalability is cheap (low 7;), the firm-size distribution is thicker. Figure 3 illustrates these

mechanisms.
Proposition 1 is reassuring, as the thick tail of the firm size distribution is well-documented

empirically (Axtell, 2001). Our model generates this property endogenously from fundamental
productivity shocks that are not themselves fat-tailed, with superstar firms emerging from the

decisions of high-productivity producers to become more scalable.

Figure 3: Tail of the distribution of firm-level output @
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"Without the constraint v; > 07/2, returns to scale increase so rapidly with e; that sectoral output becomes

infinite.
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2.4 Household

A representative household owns the firms, supplies L > 0 units of labor inelastically, and
consumes a bundle Y := Hf\; 1 (ﬁ; 102-)& of the different consumption goods, where ZZ]\; 1 Bi = 1.
Since Y measures aggregate value added in this economy, we refer to it as (real) GDP.

The household maximizes Y subject to the budget constraint®

N
Y PCi<WL, (7)
i=1
Because of the free-entry condition, all profits from the firms are dissipated through the entry cost,
and the household’s only income comes from labor.
Maximization by the household implies that spending on good ¢ amounts to a fraction 3; of
total expenditure, so that P,C; = ;PY, where P := Hfil Pfl is the ideal price index which we
adopt as numeraire, so that P = 1. Consequently, nominal and real GDP are equal, and the budget

constraint simplifies to Y = W L.

2.5 Equilibrium conditions

For any firm-level quantity B;;, we denote by B; = fOMi B;idl the sum of that quantity across all
firms in sector i. We also use brackets {B;;} to denote the set of that quantity over all sectors and
firms.

We define an equilibrium as an allocation in which the optimality conditions of the firms and

the household hold simultaneously, and all markets clear.

Definition 1. An equilibrium is a set of prices (P*, W*), a choice of returns to scale {n}}, a tuple

of quantities {C}, L}, X}, Q% }, and a mass of firms M™* in each sector such that

1. (Optimal returns to scale choice) For each i € {1,..., N} and [ € [0, M;], the returns to scale

decision 7}, solves (2) given prices (P*, W*).

2. (Optimal input choice) For each i € {1,...,N} and [ € [0, M;], factor demands L, and X}
solve (2) given prices (P*, W*).

3. (Consumer optimization) The consumption vector C* maximizes GDP Y subject to (7) given

prices (P*, W*).

4. (Free entry) For each i € {1,..., N}, the expected profit of a potential entrant in sector 4

solves

E; [II; (g, P*,W7*)] = kW™, (8)

8Because the model is static and there is no aggregate uncertainty, the household could instead maximize a
strictly increasing function of Y without affecting the results.

12



where I1;; is given by (4), and where the expectation E; is taken over ¢;;.

5. (Market clearing) For each i € {1,..., N},
N M; N N
Cit ) Xi=@i :/ F; (L, X m) dly and Y Li+ " Mik; = L. 9)
j=1 0 i=1 i=1

Conditions 2 to 5 are standard and imply that the household and the firms maximize their objective
functions, that all markets clear, and that the free-entry condition holds. Condition 1 states that

firms pick their returns to scale to maximize profits.

3 Aggregation

In this section, we aggregate the economy and derive equations for equilibrium prices and GDP.
While most of our partial equilibrium results hold under general A;’s, we need to impose additional
restrictions to aggregate the economy in a tractable way. We therefore assume that Assumption 1
holds from now on. Under that assumption, we can derive a tractable mapping between a firm’s
productivity €; and its returns to scale n;; in equilibrium. Equation (5) implies a simple mapping

between prices, productivity, and returns to scale:

1 1
— — (g4 + log P; — log H;) . 10
o~ 2 (gi1 + log P; — log H;) (10)

In the remainder of this section, we take advantage of (10) by first aggregating the firms in each

sector. We then build on that characterization to derive equations for equilibrium prices and GDP.

3.1 Sectoral aggregation

To aggregate the economy, we define the Domar weight of a production unit (a firm or a sector)
as the share of its sales in nominal GDP. For a firm [ in sector 7 and for the sector as a whole, those
are given by

POy

. _ PO
Wyl ‘= pY

and w; 1= By

We also introduce the effective returns to scale 7); of a sector, defined as the sales-weighted average

of firm-level returns to scale: o
. 1 PiQy

e o PiQi

nirdl. (11)
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This quantity will play an important role in our analysis. One can show, for instance, that the

sectoral cost shares depend on 7);:

In addition, we can characterize the returns to scale of any firm in sector ¢ using 7);.

Lemma 5. The returns to scale n; of firm I in sector i is given by

L 1*902‘_‘_5#*#1"

= - 12
L—mnu 11— 27 (12)

Furthermore, the moments of the firm-level returns to scale distribution in sector i are given by

1 1 — i [ 1 } ©i [ 1 ]
E; = —, 'V, =—_—, and Cov;|—,c;u| =p; > 0. 13
Z[l—ml} 1= 1= 2 T S (13)
Equation (12) links a firm’s own returns to scale n; to its productivity e; and the effective
sectoral returns to scale 7j;. For the firm with the median productivity (g;; = p;), this equation
simplifies to

i = ni (i) + @i (1 —m (1) - (14)

Since ; > 0, it follows that the effective returns to scale 7; of sector ¢ is larger than that of its
median firm. This is because high-productivity firms, which have higher returns to scale and are
larger (Lemmas 3 and 4), are weighted more heavily in the calculation of 7;.

Equation (14) also shows that the gap between #; and ; (11;) increases with ¢; = 02/ (27;). In-
tuitively, greater productivity dispersion 012 implies that there are relatively more high-productivity
firms. Lower adjustment costs «; also allow these high-productivity firms to adopt more scalable
technologies and grow more aggressively, leading to a higher sectoral returns to scale 7;.

The second part of Lemma 5 describes the cross-sectional moments of returns to scale within a
sector. The first moment shows again that ¢; controls the gap between the expected and effective
returns to scale. The second moment shows that a higher productivity dispersion 012 and a lower
adjustment cost ~; both contribute to greater cross-sectional dispersion in 7;;. The third moment
confirms that high ¢; firms choose higher 7;;. As the endogenous returns to scale mechanism shuts
down (¢; — 0), the covariance between productivity and returns to scale goes to zero. Later on, we
will rely on that covariance to measure the strength of the mechanism in the data.

Aggregating firms within a sector using the free-entry condition (8) yields the following results.’

9Since all firms in a sector face the same output price, they have the same marginal cost through profit maxi-
mization. We therefore define the marginal cost A; of a sector i as the marginal cost of any firm in that sector, such
that A; := Ay for any (or all) . Equivalently, since, as we show later, the economy is efficient, one can write the cost
minimization problem of the sector and find the same expression.
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Proposition 2. The marginal cost of sector i is given by

N
- S e T PP, (15)
j=1

1
Zi (1)

A=

where sectoral total factor productivity Z; (n;) is defined as

2
. . o;y 1 1 . 1 .
log Z; (i) == pi + ai (M) + = —+ = (1 —1;)log —(1—n;)logk;. (16)
21— ;i 2 1-— :
Ezxogenous returns to scale Superstar effect Entry cost

Furthermore, the effective returns to scale 7; is given by

1

— = w; +log P; — log H;) . 17
L= 2%‘(1—%)( ) a7

The sectoral marginal cost \; takes the standard form associated with a Cobb-Douglas produc-
tion function with two factors: labor, which is used for production and entry costs, and intermediate
inputs. The cost shares of these inputs are driven by the effective returns to scale 7; of the sector.
As these shares sum to one, the sector as a whole exhibits constant returns to scale. Intuitively,
free entry acts as an adjustment margin: while individual producers may operate under decreasing
returns, the entry of new firms allows the sector to expand to achieve constant returns. A higher 7;
implies that firms are larger and more scalable, so fewer of them have to enter to achieve a given
amount of production. Consequently, less labor is consumed by entry costs, lowering the overall
labor share, 1 — %; Z]- «;j, of the sector.

Equation (16) characterizes the sector’s total factor productivity Z; (7;). As expected, sectoral
productivity depends on the mean firm-level productivity p; and the productivity cost a; (7);) as-
sociated with the effective returns to scale. However, firm heterogeneity also plays a role. The
third term in (16) captures a standard selection effect: as more productive firms grow larger, they
receive a larger share of input factor, raising sectoral productivity. These first three terms would
also appear in an exogenous returns-to-scale model in which all firms share a common 7;; = 7;. The
fourth term in (16), however, captures a novel amplification channel from endogenous returns to
scale. In our model, high-productivity firms not only produce more but also choose more scalable
technologies, which allows them to grow even larger. This superstar effect amplifies their contri-
bution to sectoral productivity beyond the standard selection effect. Finally, the last term in (16)
captures the role of entry costs. A higher entry cost k; diverts labor away from production, lowering
sectoral productivity, with the magnitude of this loss determined by the importance of the fixed
factor, 1 — 7);.

Proposition 2 also provides an expression for the sector’s effective returns to scale. This expres-

sion is analogous to the one determining firm-level returns to scale, given by (10), but it includes the

15



adjustment term ; to account for firm heterogeneity. This adjustment reflects that larger, more

productive firms have a disproportionate impact on the aggregate measure of returns to scale ;.

3.2 Prices and GDP

Having characterized sectoral production, we can now aggregate the economy to derive expres-

sions for prices and GDP. To do so, we define the sectoral Leontief inverse matrix
L:= (I —diag () )",

where diag (7)) is the diagonal matrix with the effective returns to scale vector 7 on the main diagonal.
An element £;; of this matrix captures the importance of sector j in the production of good 4, taking
into account direct and indirect connections through the production network. For example, £;; is
large if sector i uses a large share of inputs from j (i.e., 9;ay; is large), or if 7 relies on another sector
k that, in turn, relies heavily on j, and so on.

We show in Appendix C.1 that the Leontief inverse can be used to write the sectoral Domar
weights as

A e
wi =3 BT 1, (18)

PiQi

Y
where 1; is the ith standard basis vector. As usual in network economies, the Domar weight w;
provides a measure of the importance of sector w; as a supplier. A sector i has a large Domar weight
if its output is heavily demanded, either directly by the household (high ;), or indirectly by other
sectors that the household favors (high £;; and 3;).

Sectoral returns to scale 77 play an important role in shaping the production network. Intu-
itively, when a downstream producer increases its returns to scale, it effectively shifts its input mix
toward intermediate goods, thereby increasing its demand for upstream suppliers. This strength-
ens the input-output linkages and raises the Domar weights of those suppliers. As we will show,
this mechanism has important implications for the impact of endogenous returns to scale on the

macroeconomnly.

We can now characterize equilibrium prices and GDP.

Proposition 3. The equilibrium price vector P = (Py,..., Py) satisfies
P
log — = —L (7 g 19
08 777 (1) z (1) , (19)

where z () = (log Z1 (M) , ... ,1og Zn (7n)) is the vector of log sectoral productivities (16). Further-
more, equilibrium log GDP y :=logY s given by

y(@) = [w@] @) + log L. (20)

Aggregate productivity — Labor endowment
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In equilibrium, prices must equal marginal production costs (P; = A;). This condition, combined
with Proposition 2, allows us to solve for the vector of sectoral prices as 19. Intuitively, the price of
good i is low if its key suppliers—both direct and indirect, as captured by the i-th row of L—have
high productivity z.

Equation 20 shows that the contribution of a sector’s productivity z; to GDP is proportional to
its Domar weight w;, as in standard production network economies. One key feature of our model,
however, is that both w and z depend on the endogenous effective returns to scale 7. We will explore

in Section 5 the role played by 7 in shaping GDP.

3.3 Equilibrium existence, uniqueness and efficiency

The preceding analysis describes key equilibrium objects, such as prices and GDP, as functions
of the vector of effective returns to scale 7. To solve for 7 itself and characterize how it responds
to changes in the environment, it is convenient to rely on the problem of a social planner. Since
there is a single representative household in the economy, the planner’s problem is to maximize that
household’s utility (GDP) subject to the physical constraints of the environment. The following

result characterizes that problem and its relation to the set of equilibria.

Proposition 4. There exists a unique equilibrium, and it is efficient. Furthermore, the equilibrium

vector of effective returns to scale 1) mazximizes GDP y (7)), as given by (20).

The proof of this proposition establishes an equivalence result between the set of equilibria and
the set of efficient allocations. It further shows that since there exists a unique efficient allocation,
there is also a unique equilibrium. We can then use the first-order conditions of the planner to find
the equilibrium 7. With that object in hand, the returns to scale of all the firms can be recovered

using (12).

4 Forces shaping returns to scale decisions

In this section, we study how changes in the environment affect returns to scale in equilibrium.

To do so, we rely on the fact that the equilibrium is efficient, and that the effective returns to scale

vector 1) maximizes GDP. The first-order condition associated with that problem is'©

da; o2 1 1 ( ) ]

T ? 7

wic; Lz + wi|l—+2+——5 —=lo + logk;| = 0. 21

o Cldg 2 (1—7)% 2 B\ o B ()
——

Network adjustment: dw /dfj; Productivity adjustment: dz;/dfj;

A marginal increase in 7); has two effects on the economy. First, it makes intermediate inputs more

important production factors. As a result, the network becomes more connected and Domar weights

108ee the proof of Proposition 6 for a derivation.
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increase. Through this channel, captured by the first term in (21), the productivities z of the sectors
that are upstream of ¢ have a larger impact on GDP.

Furthermore, increasing 7); affects the productivity z; of sector i directly, as captured by the
term in square brackets in (21). The first term there captures the additional productivity cost a; of
selecting a higher returns to scale 7);. In addition, when returns to scale are larger, production can
move more easily to the most productive firms within the sector. This amplified selection process is
captured by the second term between brackets. Higher returns to scale also affect the importance
of returns to scale dispersion within a sector. When 7; is close to 1, there is less room for the
most productive firms to increase their returns to scale and, through that channel, reach a larger
size. This effect is captured by the third term between brackets. Finally, a higher 7); means that
firms can scale up more freely and thus produce more. Consequently, fewer firms enter, and sectoral
productivity benefits from a reduction in the total entry costs. This effectively leads to an increase

in sectoral productivity, as the last term in (21) shows.

4.1 Sectoral productivity

We now analyze how changes in the environment affect equilibrium returns to scale. Two prices
play a key role in this process. The first is the price H; of the variable input bundle. At the firm
level, more expensive inputs move firms toward technologies with lower returns to scale. The second
price is the wage W, which plays an additional role at the sector level. When labor is expensive,
entry becomes costly, reducing the mass of firms. This allows incumbents to expand and encourages
the adoption of higher returns to scale. Combining these two effects, we find that the ratio H; /W is

1'11

key to determine how returns to scale evolve at the sector leve To capture the role of this ratio,

we define the input-price sensitivity matrix JC with typical element

where the partial derivative holds 7 fixed. The matrix X summarizes how productivity shocks
propagate through the network to affect input costs. Using the pricing equation (19), we can show
that K = —aL. Since higher productivity lowers prices, the elements of I are non-positive, with
Ki; < 0 whenever sector j is an upstream supplier to sector i (i.e., L;; > 0).'2 The matrix K
plays an important role in our analysis and depends crucially on the input-output structure of the
economy. Without network connections, = 0 and several of the mechanisms that we explore
below disappear.

Since the sensitivity of sectoral productivity z; to changes in 7 also influences how fundamentals

" One can show that H;/W is the quantity that is raised to the power #; in the marginal cost expression (15),
which explains its importance for scalability decisions. _
12We have £ = (I — diag () a) ' = I + 37, (diag (7) a)’ = I — diag (1) K, so that Ki; < 0 & Li; > 0if i # j.
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affect equilibrium returns to scale, it is convenient to define

dQZZ- dQCLZ'
;= =1 —-vi) =
di? (=) di?

<0,

where the second equality follows directly from (16). The inverse \Ili_l therefore captures how elastic
returns to scale are in sector i. A small |¥;| implies that returns to scale are flexible and respond
strongly to changes in the environment.

Using these definitions, we can characterize the impact of ;1; and O'j2- on sectoral returns to scale.

Lemma 6. An increase in average productivity ji; increases returns to scale in all downstream

sectors, such that
dn;
dZ; A ) (22)

Furthermore, the impact of productivity dispersion a]z on 1; 1s given by

A . 2,,.
dn); _ \11;1 <IC 0z 9z > , (23)

iins ~ Yi=j} 537
d0']2- J 80]2 {i= }801-28771-
where
8Zj 1 1-— ﬁj 0 <821> 1 1
= — + >0,and — | == | = — .
902~ 2(1 -1y Ay (1) 902 \oni) 21 —n,)?  4vi(l—¢i)

In particular, dﬁi/dajz >0 fori#j.

Consider (22) first. An increase in p; makes firms in sector j more productive, which lowers
the price P; through competition. If sector i is a downstream customer of j (£;; > 0), this lowers
the price of its variable input bundle by an amount proportional to |KC;;|. This in turn pushes
firms in sector 7 to increase their returns to scale to take advantage of the cheaper intermediate
inputs (Proposition 2). The magnitude of this response depends on how elastic 7); is, as given by
v ! Both o? and ; influence this elasticity through ¢;. Specifically, if ¢; is large, which is the
case if productivity is dispersed (high o?) or scalability is cheap (low +;), the response is stronger.
Intuitively, in such sectors, there is a larger mass of high-productivity firms able to aggressively

scale up in response to cheaper inputs.

Example. Consider as an example, the economy depicted in the left panel of Figure 4. Since sector
k is downstream from j, an increase in jp; reduces the price of the input bundle in sector k. In
response, firms in sector k increase their returns to scale 7, as panel (a) shows. In contrast, since
sector ¢ is not downstream from j, input prices in sector i are unchanged and so are their returns

to scale 7).
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Figure 4: The impact of sectoral productivity on returns to scale and Domar weights in a vertical

economy

The second part of Proposition 6shows that an increase in dispersion O'JZ affects returns to scale
similarly to a productivity shock p;. Indeed, higher dispersion O'j2- raises sectoral productivity z;
through two channels. First, it strengthens the standard selection mechanism: even with fixed
returns to scale, higher variance reallocates market share to more productive firms. Second, it
amplifies the superstar effect: with a fatter right tail of productivity, the most productive firms
adopt even higher returns to scale, further boosting aggregate efficiency. This increase in z; lowers
output prices, triggering a downstream increase in returns to scale 7); analogous to the response to
a pj shock.

For the shocked sector j itself, however, an additional channel is at work. As shown in (21),

higher dispersion 0]2 generally increases the marginal benefit of scalability (i.e., the sensitivity of z;

to 7). Intuitively, when the productivity distribution is more dispersed, the gains from allowing

the best firms to scale up are larger. This direct incentive effect, captured by the term aig (g;:),
leads to a further increase in ﬁj.l?’

Lemma 6 focuses on changes in the productivity process, but it is straightforward to derive
similar results for changes in entry costs x; and the cost of scalability v;. We provide these results
in Appendix D.2. In a nutshell, an increase in the entry cost x; in sector j always reduces the
effective returns to scale of any other downstream sector ¢ # j since it leads to an increase in the
price of good j. An increase in the cost of scalability v; naturally leads to a reduction in returns to

scale in sector j. The price of good j increases as a result, leading to lower returns to scale in other

sectors as well.

3This term is positive for reasonable calibrations of the model, but can be negative under some parametrizations.
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4.2 Implications for Domar weights

The comparative statics results derived so far describe how the equilibrium returns to scale 7
respond to the environment. These movements in 7 are important, in part, because they directly
alter the sectoral Domar weights w and, therefore, GDP. The following lemma formalizes this rela-
tionship. In the next section, we use this result to analyze how endogenous returns to scale shape
GDP and welfare.

Lemma 7. The impact of a parameter x € {{,05,K5,7;} on sectoral Domar weights is given by

dw; al dn
b= — E Kriwp — 24
dX k=1 H dX ( )

Proof. Follows directly from differentiating the expression for Domar weights w given by (18). [

This result shows that if a shock to x leads sector k to increase its returns to scale (7 1), the
Domar weights of all sectors upstream of k increase. To illustrate this mechanism, consider again

the example in Figure 4.

Example. Recall that an increase in p; raises productivity in sector j, lowering P; through com-
petition. Since k is a downstream customer of j, firms in & respond by increasing their returns to
scale 7 to take advantage of the cheaper input (Lemma 6). Lemma 7 shows that this shift raises
the Domar weights of all of k’s suppliers (panel (b) in Figure 4). Intuitively, as sector k scales up, it
becomes more input-intensive, increasing its demand for upstream goods. Consequently, the sales
and the Domar weights of sectors ¢ and j rise, reflecting their increased centrality to aggregate pro-
duction. Notably, sector i’s importance grows even though its own returns to scale are unaffected
by the shock.

This example highlights a key feature of our model: while productivity shocks propagate down-
stream to affect returns to scale, adjustments in returns to scale propagate upstream to reshape
the network structure and alter Domar weights. As we show next, this interaction has important

implications for GDP.

5 Endogenous returns to scale and GDP

Endogenous scalability has important consequences for GDP and hence welfare. In this section,
we show that it raises the level of GDP through better resource allocation and alters the economy’s
response to shocks. We then show that endogenous returns to scale lead to higher long-run economic
growth.

Throughout our analysis, we compare the equilibrium of our model to a counterfactual economy

in which returns to scale are exogenously fixed.
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Definition 2 (Fixed returns-to-scale economy). Let the equilibrium effective returns-to-scale vector
in the baseline model be 7. The fized returns-to-scale economy is an otherwise identical economy
in which the returns to scale of all firms are exogenously set to n; = 7; for all ¢ and [. All other
quantities are chosen optimally. Furthermore, the returns to scale {n;;} are fixed and do not respond

to any changes in the environment.

Endogenous returns to scale do two main things in our model: They create dispersion in 7
within a sector, and they allow 7;; to respond to changes in parameters. The fixed returns-to-scale
economy, by construction, shuts down both of these channels. By comparing our baseline model to
this counterfactual, we can therefore isolate the full impact of endogenous scalability on economic
outcomes.' Note that by construction, sectoral Domar weights are the same in both economies. In

what follows, we use ~ to denote quantities in the fixed returns-to-scale economy.

5.1 Contribution of endogenous returns to scale to the level of GDP

We first examine the impact of endogenous returns to scale on GDP by comparing its level in
the baseline and the fixed returns-to-scale economies. Since both economies share the same Domar
weights, any difference in GDP must arise from differences in sectoral productivity. Comparing that

quantity in the baseline model (Z) with its counterpart in the fixed returns-to-scale economy (7),
we find that!®

log Z; (i) — log Z; (1) := % (1 —1;)log <1 _1%> > 0. (25)
Thus, sectoral productivity is always larger in the model with endogenous returns to scale. Intu-
itively, when returns to scale are fixed, high-¢; firms are no longer able to adjust their scalability
to take advantage of their high productivity. This limits how much they produce, and sectoral pro-
ductivity falls as a result. The superstar effect is completely neutered in that case. Equation (25)
shows that the difference between the two economies is particularly pronounced when the effective
dispersion ¢; is large and the effective returns to scale 7; is low. In those circumstances, highly
productive firms in the baseline model can deviate strongly from 7; and thus contribute more to

sectoral productivity.

The following results characterize the aggregate impact of endogenous returns to scale.

Proposition 5. The difference in log GDP between the baseline model and the fized returns-to-scale

economy s given by

(]

AN 1
y—y:;wiQ(l—ni)10g<1_(pA>>0. (26)
1=

The gain in GDP from endogenous returns to scale is simply the Domar-weighted gain in sectoral

productivity. We see from (26) that y—g is particularly large if the sectors in which high-productivity

141 Section 7, we disentangle the impact of these two channels in our calibrated model.
5See the proof of Proposition 5 for the derivation.
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firms can scale their returns to scale more easily (high ¢; and low 7);) are also important suppliers
(high w;). In the calibrated economy of Section 7, we will see that the impact of endogenous returns
to scale on the level of GDP can be sizable.

5.2 How GDP responds to changes in the environment

In addition to the level of GDP, endogenous returns to scale also affect how GDP responds to

changes in the environment.
Proposition 6. In equilibrium, the following holds.

1. An increase in average productivity pi; raises GDP:

dy _ Oy
— =——=w; >0. (27
duj — op; )
2. An increase in productivity dispersion 0]2 raises GDP:
dy Jy 1 1 1-7; 1
— = = —=w.: | = — + > 0. 28
d0j2- 80? / <2 11—, dy; 11— (28)

3. An increase in entry cost k; lowers GDP:

dy 0Oy
dlog K; N Olog k;

= —w; (1 =17;) <0.

4. An increase in the returns to scale productivity cost y; lowers GDP:

d 0 1 1—mn; j
W _ 9 _ —wj < — + 0% > < 0. (29)
dvyj O L= 27 1-y;

In these expressions, the partial derivatives indicate that returns to scale {ny} are taken as fized.
Proof. The result follows directly from the envelope theorem. O

Since the equilibrium 7% maximizes GDP, any marginal adjustment in returns to scale must have
no impact on GDP. This implies that GDP responds to marginal changes in the environment as if
returns to scale were fixed. Consequently, Hulten’s (1978) theorem applies: the first-order impact
of a productivity shock dy; is simply the Domar weight w; of the affected sector. Note, however,
that Domar weights themselves are endogenous in our model and depend on the incentives shaping
returns to scale. Similarly, the impact of a change in entry costs dlog x; is determined by its direct

effect on sector j’s productivity z;, captured by 1 — 7);, weighted by that sector’s importance, w;.
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The impacts of a?. and v; operate in a similar way, but here endogenous returns to scale feature
more prominently. Consider first an increase in 0']2-. This has two positive effects on sector j’s
productivity z;. First, the higher dispersion in €; implies a larger mass of very productive firms,
with positive consequence for GDP. This selection effect is captured by the term %ﬁ—fm in (28) and
would be at work even without within-sector dispersion in 7;; (i.e., in the fixed returns-to-scale
economy). Second, increasing 0'j2- interacts with the superstar effect. Since high-¢; firms already
have high returns to scale, the increase in dispersion has a disproportionate impact on them. This
effect is captured by the remaining term in (28). Overall, increasing 032- always has a positive effect
on GDP, and the presence of endogenous returns to scale, as it creates dispersion in within sector
firm-level returns to scale, make that effect larger, even to a first order.

Conversely, an increase in the cost of adjusting returns to scale 7; has two adverse effects on
GDP. The first effect is mechanical: a higher «; directly increases the average productivity cost
—a; (1) in sector ¢, which lowers GDP. This effect is captured by the first term in (29). Second, v;
interacts with the superstar effect. Since the biggest producers have the highest returns to scale,
they suffer particularly strongly from an increase in 7;. Indeed, recall that a; (1) = —v;/ (1 — ni)
such that for 7; ~ 1, a marginal increase in v; has a particularly severe impact on productivity.
This effect is captured by the second term in (29). Proposition 6 shows that increasing -y, always

hurts y, and all the more so when the superstar effect is stronger.

5.3 Second-order impact of productivity shocks

In our baseline model, the equilibrium is efficient, which implies that GDP responds to infinites-
imal productivity shock as if returns to scale were held fixed. For larger shocks, however, the Domar

weights themselves respond and, doing so, affect GDP.

Proposition 7. The response of log GDP y to a shock Au; is given by

1 dw;
Ay = widp; + 5

33 ()P + o ((am)?). (30)

Furthermore, the second-order term is non-negative, dw;/du; > 0 and given by (24).

Equation (30) provides a second-order approximation of the GDP response to a shock Ap;.
While the first-order term is the standard Domar-weight effect from Hulten’s theorem, the second-
order term captures a novel channel driven by the endogenous adjustment in returns to scale. That
channel operates through the response of Domar weights to the shocks.

The intuition is straightforward. Recall that a positive productivity shock in sector ¢ propagates
downstream, lowering input costs for its customer sectors. These sectors, in turn, are incentivized
to increase their own returns to scale to capitalize on the cheaper inputs. This shift towards greater

scalability makes the production network more reliant on sector ¢, which increases its Domar weight.
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As a result, the derivative dw;/dp; is positive. This implies that the second-order term is always
positive, adding convexity to the GDP response. In other words, endogenous returns to scale amplify
the impact of positive productivity shocks and dampen the adverse impact of negative shocks.

To identify the sources of this amplification and dampening, we can use Lemma 6 to express the

second-order coefficient as
dwi
dp;

N
== wp ¥ 'K} > 0. (31)
k=1

The second-order term is therefore stronger when the shock hits a sector ¢ that is a key supplier
(ICki| large) to sectors that are large (high wy) and have elastic returns to scale (low ¥y, meaning
a low cost of adjusting scalability). Those sectors more strongly increase their cost share of good
1 after the increase in p;, contributing to a larger increase in w;. Crucially, it is the square of Kg;
that shows up in (31), implying that the convex response of GDP is disproportionately stronger for
shocks to the most important suppliers.

Proposition 7 implies that whether shocks hit sectors that are upstream or downstream in the

supply chain matters for their impact on GDP. The following example illustrates the mechanism.

Example. Consider the vertical economy depicted in Figure 5. An upstream sector 1 sells its entire
output to a downstream sector 2, which in turn sells to the final consumer. Panel (a) shows the
impact of a productivity shock p; to the upstream sector. The solid line, representing the response
of GDP, is clearly convex and lies above the linear, first-order approximation from Hulten’s theorem
(dashed line). This illustrates the amplification effect: as p; increases, the price of good 1 falls,
inducing firms in the downstream sector 2 to increase their returns to scale to capitalize on cheaper
inputs. This change in production processes makes sector 1 a more important supplier, increasing its
Domar weight and thus magnifying the aggregate benefit of its higher productivity. Panel (b) shows
a starkly different result for a productivity shock o to the downstream sector. In this case, the full
GDP response is linear and coincides with the Hulten’s theorem approximation. Because sector 2
is at the bottom of the supply chain, a fall in its price provides no benefit to any other producing
sectors. There are no downstream customers to re-optimize their scalability choices, and thus no
structural amplification. This example shows a key implication of our model: the macroeconomic

impact of a productivity shock depends crucially on a sector’s position in the production network.

5.4 Extension: The role of wedges

So far, our analysis has focused on an efficient equilibrium where the envelope theorem holds,
meaning that adjustments in 7 have only second-order effects on GDP. We now show that in the
presence of frictions, markups or other distortions, this is no longer the case, and changes in returns

to scale can have first-order effects on GDP.
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Figure 5: The impact of sectoral productivity on GDP in a vertical economy

We consider a setup with general wedges in Appendix D.5, but to illustrate the forces at work
transparently, we focus here on distortionary sales wedges. Specifically, we assume that firm [
in sector ¢ retains only a fraction 1 — TZ-S of its revenue, where TiS € [0,1) represents the wedge.
From the firm’s perspective, these wedges are equivalent to a reduction in productivity, leading to
an inefficient adjustment in scalability. We assume that the proceeds from the wedges are fully
rebated to the household lump-sum, ensuring that they act as pure distortions with no direct loss
in resources.

Sales wedges directly affects the scalability choices.

Lemma 8. An increase in the wedge TZ-S decreases the returns to scale in all downstream sectors,
such that
di; I
75 :—1_TS\I/Z. Kij <0. (32)
J J

6Intuitively, the sales wedge acts like a markup, driving a wedge between marginal cost and the
market price. As Tis rises, output prices increase as well, making intermediate inputs more expensive
for downstream firms. Facing higher variable input costs, these firms optimally substitute away from
input-intensive technologies by reducing their returns to scale. Since firms do not internalize that
the revenue from wedges is rebated to the household, this adjustment leads to an equilibrium with
inefficiently low returns to scale.

Wedges also have important implications for the behavior of GDP. Propositions 6 and 7 show
that without wedges, changes in returns to scale only have second-order effects on GDP. This is no

longer the case when wedges are present.

Proposition 8. In the presence of sales wedges, the impact of a parameter x € {uj,0j,k5,7;} on
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GDP is given by
dy 0y, N~ Oydi
dx Ix < Onj; dx

~~ —
Direct effect  Structural change effect

: (33)

1=

where Oy/0x is given by Proposition 6, dn;/0x is given by Lemmas 6, 9 and 10, and dy/0n; > 0.

This proposition shows that the total effect of a shock is now the sum of a direct effect (the
standard Hulten’s-like term) and a new structural change effect. Since wedges push 7} to be inef-
ficiently low, any shock that incentivizes firms to increase their returns to scale (d7j/dx > 0) now
generates an additional, first-order welfare gain.

Consider, for example, a positive productivity shock dp; > 0. As in the efficient case, it directly
raises GDP. However, it also lowers input costs, inducing firms to increase their 7. Because the
economy started from an inefficiently low level of returns to scale, this structural adjustment is no
longer a second-order refinement but a first-order improvement. This implies that dy/du; > w.
Productivity shocks have a larger impact on GDP in this distorted economy because they not only
improve productivity but also partially correct the pre-existing distorted scalability structure.

The nature of this first-order effect depends on the type of distortion introduced in the model.
While sales wedges lead to inefficiently low returns to scale, other distortions can have the opposite
effect. For example, as we show in Appendix D.5, a corporate profit tax can effectively raise the cost
of entry, which perversely incentivizes incumbent firms to choose inefficiently high returns to scale.
In such an economy, a productivity shock that further raises 7 could actually be welfare-reducing
at the margin.!® This highlights the importance of understanding the specific nature of distortions

when evaluating the welfare effect of shocks in an economy with endogenous scalability.

5.5 Implications for growth

Endogenous scalability can also propel long-run economic growth. To illustrate this mechanism
transparently, we simplify the model to a single-sector economy and assume that growth is driven
by a constant rate of productivity improvement, du/dt = g, > 0.

We begin our analysis by characterizing the growth rate of returns to scale in this environment.

Corollary 1. The growth of effective returns to scale ) is given by

diy _

i U1K, > 0. (34)

Furthermore, as t — oo, effective returns to scale 7 converges to 1.

The constant improvements in sectoral productivity g result in cheaper intermediate inputs,

'6We show this formally in the proof of Proposition 12 in Appendix D.5. See, in particular, equation (86).
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which push firms to increase their returns to scale, so that dij/dt > 0.!7 The strength of that
mechanism relies on how fast productivity improves (g, ), but also on the importance of intermediate
inputs in production, as captured by the term —a/ (1 — o) = K. When « is large, intermediates
are more important and 7 grows faster, all else equal. In addition, dn/dt depends on the elasticity
of 7} in response to a change in input prices. As in the comparative statics exercise of Section 4, this
effect is captured by 1/¥. An economy that is more flexible and faces stronger incentives will more
rapidly reconfigure itself toward a more scalable structure.

The evolution of the economy’s returns to scale has implications for the growth rate of GDP.

Proposition 9. The growth rate of GDP is given by

d 1
W_ 91— >0, (35)

dt 1—«
11—
\/1 +55° (719_‘20254-]’)

where

l-a,

T.=— a (ﬁo) —2a (ﬁo) >0,

(0%

and where T is the effective returns to scale att = 0.

This proposition provides a closed-form solution for the growth rate of GDP along its entire
transition path. The growth rate dy/dt can be understood as the product of two terms: a potential
long-run growth rate, g,/ (1 — «), and a convergence factor (the term in parentheses) that starts
below one and asymptotically approaches it as t — co. This means that the economy’s growth rate
is always increasing, accelerating towards its long-run potential, which it reaches asymptotically.

The speed of this convergence is governed by the terms inside the square root. The economy
adapts its structure and accelerates more quickly when the forces driving reorganization are stronger.
Specifically, the transition is faster when: 1) the pace of innovation (g,) is high, providing a strong
and persistent incentive to adapt, and 2) the economy is structurally flexible, meaning the net cost
of adjusting scale is low (low « and high ¢).

Figure 6 provides an example of the dynamic of the growth rate of GDP. The left panel shows
that from its initial condition 7 (0) = 7y, growth increases before converging to its long-run level
gu/ (1 — ). The right-panel depicts the same economy but with a higher . In this case, increasing

returns to scale is more costly, and the progression to the long-run growth rate is slower.'®

7Several empirical studies document rising returns to scale over time. De Loecker et al. (2020) estimate that
firm-level returns to scale have increases over the last few decades in the United States. Chiavari and Goraya (2025)
show that these results hold even accounting for intangible capital. Lashkari et al. (2024) provide evidence that the
decline in IT prices led to an increase in returns to scale in France.

¥While growth is always accelerating (dy/dt* > 0), the rate of acceleration is in general modest. One can show
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Figure 6: Endogenous returns to scale accelerate growth

Finally, we can compare the growth rate of GDP in the model with endogenous returns to scale,

to its counterpart in the fixed returns-to-scale economy.

Corollary 2. For any t > 0, GDP grows faster in the economy with endogenous returns to scale.

In the limit as t — oo, the long-run growth rates satisfy

ey 11 L dd
im — = = lim —
theodt  1—alt 71— ﬁoag” t—oo dt’

where § is log GDP in the fized returns-to-scale economy, and where Mg is the effective returns to

scale vector in the baseline economy at t = 0.

This result captures the key growth implication of our model: an economy that can adapt its
returns to scale grows faster. In the fixed-scale economy, the benefits of technological progress
are constrained by a static production structure. In our model, as sectoral productivity increases,
the economy adopts more scalable technologies and becomes more interconnected. This increases
Domar weights and magnifies the benefit of the higher productivity. This effect grows larger over
time, with an increasing gap between the growth rates of the two economies. Our model therefore
suggests that the macroeconomic consequences of scaling decisions, like Ford’s introduction of the
moving assembly line, are not a one-off level effect, but a persistent force that reshapes the economy’s
long-run growth trajectory.

The quantitative implications of endogenous returns to scale for growth can be substantial. For
instance, using parameters calibrated to the Spanish economy (where o = 0.67 and 7y ~ 0.83, see

next sections), a 1% annual rate of underlying technological progress (g,) would translate into a

that the second derivative of log GDP scales with gi. This implies that for realistic calibrations of annual productivity
growth (e.g., g. ~ 1%), the acceleration is a gradual, slow-moving process, that might be hard to notice over short

horizons.
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2.2% growth rate in the fixed-n economy. With endogenous returns to scale, however, the long-run
growth rate converges to 3.0%. This difference of 0.8 percentage points, compounded over decades,

can amount to a large welfare gain.

6 Empirical evidence

Our theory describes how returns to scale respond to the economic environment. In this section,
we use detailed firm-level data from Spain to provide empirical evidence for these predictions at the
firm, sector, and aggregate levels. Consistent with the model, we show a robust positive correlation
between productivity and returns to scale in the cross-section of firms. We further use panel data
and within-firm variation to demonstrate that returns to scale respond to incentives: firms actively
increase scalability as they grow and reduce it when facing higher input costs driven by import
tariffs. At the sector level, the theory predicts that industries with stronger endogenous scalability
should exhibit fatter firm-size tails. We find strong support for this mechanism in the data. Finally,
our theory implies that endogenous scalability is beneficial for GDP. To test the prediction, we
extend our analysis to 24 countries, and show that the strength of this mechanism is indeed a

predictor of long-run economic development.

6.1 Data

Our primary source of firm-level data is Moody’s Orbis Historical database, which covers the
near-universe of Spanish firms between 1995 and 2019. This dataset provides detailed information
on sales, labor costs, capital stocks, and material costs. After cleaning, our sample comprises
9,754,405 firm-year observations.'® We use these data to estimate firm-level returns to scale using
a production function approach. We briefly describe our estimation procedure below and provide
additional details in Appendix A.1.

We complement our analysis with firm-level data from 24 additional countries. We use data
from Orbis for 22 European countries with good coverage of the key variables needed for production
function estimation. For developing countries, we use China’s National Bureau of Statistics (NBS)
firm-level database and India’s Annual Survey of Industries (ASI), both of which are censuses of
above-scale manufacturing firms. The details of data cleaning and variable construction are provided

in Appendix A.7.

19WWe deflate all nominal variables using the Spanish GDP deflators and drop any firm-year observation whose
average revenue product for any input (fixed assets, wage bills, or material costs) lies above the 99th percentile or
below the 1st percentile of that year’s distribution.
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6.2 Estimating returns to scale and productivity

Our theory predicts that within a sector, firms of similar sizes should have similar returns
to scale. We take advantage of this prediction to estimate returns to scale across the firm-size
distribution. Specifically, for each sector ¢ and year ¢, we group firms into 10 deciles based on their
7-year moving average of firm-level log sales (years ¢ — 3 to ¢t + 3). This construction smooths out
short-run fluctuations and measurement error and thus yields a more reliable measure of a firm’s
position in the size distribution.

In our baseline approach, we assume that all firms in bector 1, year t and decile d; share the

same Cobb-Douglas production technology Qq;; = thK Biin, Liédt(l)’tMgffit@‘t, where K, L
and M;;; denote capital, labor and materials, respectively. We then estimate the output elasticities
for each cell (i,¢,d;) using the Blundell and Bond (2000) IV-GMM estimator on a 7-year rolling-
window sample. The estimated returns to scale n;;; for a firm [ in sector ¢ and year t is therefore

given by the sum of these elasticities:

ni = BF, de B AL + 8N (D)t

We then use the estimated returns to scale for the years 1997-2019 in our empirical analysis and in
the calibration of Section 7.2°

We use the Blundell-Bond estimator as our baseline because it can estimate the gross output pro-
duction function by leveraging moment conditions that exploits input persistence, without requiring
rigid assumptions on input timing. In Appendix A.4, we confirm the robustness of our results using
a wide range of alternative strategies. These include: (i) alternative production function estimators,
including Olley and Pakes (1996) and Levinsohn and Petrin (2003); (ii) controls for market power
to alleviate the measurement errors in output using the Ackerberg et al. (2015) estimator; and (iii)
grouping firms by rolling sales percentiles or by contemporaneous rather than moving-average sales.
Our main empirical patterns are robust across all of these alternative estimation strategies.

Finally, to compare productivity in the cross-section despite heterogeneous production tech-
nologies, we follow best practices in the development accounting literature (Caves et al., 1982a,b;
Feenstra et al., 2015) and construct a comparable measure, Zz;;, using a Tornqvist productivity
index. Specifically, for each sector-year, we define a hypothetical “average firm” for each sector-year
with mean (log) sales, (log) inputs, and output elasticities. The measure Z;; then compares pro-
ductivity between firm [ and the average firm by looking at how much more output one produces
relative to the other, adjusting for differences in technology and input use. We formally define this

productivity index and provide more detail in Appendix A.3.%!

20We do not estimate the elasticities for 1995 and 1996 as the number of firm-year observations in each sector-
year-decile cells is limited in those years. Our 1997-2019 sample covers 9,424,952 firm-year observations.

2n our calibrated economy of Section 7, the within-sector correlation between the Térnqvist index and e is
above 0.99. The same number for €, +a; (1,;) is about 0.92. The Térnqvist index therefore seems to be a good proxy
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Figure 7: Returns to scale, productivity, and firm size

(a) Returns to scale and firm size (b) Returns to scale and productivity
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Notes: Panel (a) presents a binned scatter plot of firm-level returns to scale against within—sector—year sales percentiles. Panel
(b) presents a binned scatter plot of firm-level returns to scale against productivity, controlling for sector—year fixed effects;
the unconditional mean of returns to scale is added back for interpretability. Sectors are defined as the 62 sectors in the
Input—Output table of the Annual Spanish National Accounts, approximately corresponding to NACE 2-digit industries. Both
panels are constructed using a sample of Spanish firms from Orbis. See Appendix A.1l for details on variable construction and
sample selection.

6.3 Firm-level evidence
6.3.1 Cross-sectional patterns: returns to scale, productivity and size

A key prediction of our theory is that larger, more productive firms operate technologies with
higher returns to scale. Figure 7 confirms this pattern in the data. Panel (a) plots returns to
scale against firms’ sales percentiles within a sector-year. It shows that the largest firms (100th
percentile) operate with returns to scale of around 0.91, compared to 0.79 for the smallest firms
(1st percentile).?? Furthermore, panel (b) shows that higher productivity is directly associated with
higher returns to scale, which is a distinctive feature of our endogenous returns to scale mechanism.
Furthermore, the empirical relationship between returns to scale and productivity is concave. This
supports our assumption of rising marginal cost of scalability (concave a;) and qualitatively matches

the theoretical prediction in Figure 2.

6.3.2 Panel evidence on endogenous returns to scale

The evidence presented in the last section shows that on average larger and more productive
firms are more scalable. But the theory also predicts that the returns to scale of individual firms

should also respond to changes in the economic environment. Indeed, Lemma 3 establishes that

for productivity for reduced-form estimates.

2Hubmer et al. (2025) document similar patterns in Canadian and U.S. manufacturing firms. Gao and Kehrig
(2025) and McAdam et al. (2024) report that industries with larger average firm size also have higher returns to scale
in the United States and in European countries, respectively. Using production data to infer firm- and industry-
level returns to scale has a long tradition since Hall (1990), Burnside et al. (1995) and Basu and Fernald (1997).
More recent work that uses production-function estimation to recover heterogeneity in returns to scale at the firm
or industry level includes De Loecker et al. (2020), Ruzic and Ho (2023), Chiavari (2024), Savagar and Kariel (2024)
and Demirer (2025).
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beneficial shocks, whether higher productivity or lower input prices, induce firms to adopt more
scalable technologies. Since these same shocks also drive firm expansion, the model implies that
returns to scale and sales should co-move positively within a firm over time.

Figure 8 tests these predictions by plotting the within-firm variation in returns to scale against
sales and productivity, controlling for firm and sector-year fixed effects.?> Both panels show a strong
positive relationship: when a firm experiences an increase in sales or productivity, its returns to
scale tend to rise. Quantitatively, a 100% increase in sales is associated with a 0.013 increase in
returns to scale, while an analogous increase in productivity raises returns to scale by 0.008. Taken
together, these within-firm results provide panel evidence for our mechanism: rather than operating
fixed production technologies, firms seem to adopt higher returns to scale as they grow.We next
examine the response of returns to scale to changes in input costs. In the model, an increase in
the cost of the variable input bundle, for example, due to higher tariffs on imported intermediates,
reduces returns to scale.?* To test this prediction, we exploit variation in import tariffs, which
differentially affects input costs across sectors and over time. We construct a sector-year measure
of exposure to tariff-induced changes in input prices, log T;, combining data from the OECD multi-
country input—output tables and the Global Tariff Project by Teti (2024) (see Appendix A.6 for
details). We then estimate the dynamic impact of these shocks on returns to scale using panel local

projections for horizon years h = —2,...,5:

Nitt+h — Nilt—1 = Brlog Tyt + Yin + Ve + €itth, (36)

controlling for firm (;,) and year (y4p,) fixed effects. Figure 9 plots the estimated dynamic response
Bh to a standardized tariff shock. Consistent with the theory, firms that are more exposed to
tariff-induced cost increases experience larger declines in returns to scale after the shock. A one-
standard-deviation shock is associated with a decline in returns to scale of up to 0.004. This
adjustment happens progressively, suggesting that changing returns to scale might take time.
Taken together, this evidence is consistent with the key premise of our model that firms adjust
their returns to scale in response to both productivity and input-cost changes. This supports our
interpretation of returns to scale as an endogenous choice margin rather than a fixed feature of the

production function.

6.4 Sectoral evidence

Our model has implications for cross-industry variation. For instance, because high-productivity

firms adopt more scalable technologies to leverage their productivity advantage, sectors with greater

23To track within-firm productivity over time, we use a within-firm Térnqvist productivity index that nets out
share-weighted input growth from output growth. Full definitions and implementation details are in Appendix A.3.
24We formally analyze the model with a tax on intermediate inputs in Appendix D.5.
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Figure 8: Within-firm variation in
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Notes: Panel (a) presents a binned scatter plot of firm-level returns to scale against log sales. Panel (b) presents a binned
scatter plot of firm-level returns to scale against productivity. Firm fixed effects and sector-year fixed effects are controlled
in both panels. Sectors are defined as the 62 sectors in the Input—Output table of the Annual Spanish National Accounts,
approximately corresponding to NACE 2-digit industries. Both panels are constructed using a sample of Spanish firms from
Orbis. See the main text for details on variable construction and sample selection.

Figure 9: The impact of a one-standard-deviation tariff shock on firm-level returns to scale
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Notes: This figure reports estimation results for equation (36) using a sample of Spanish firms from Orbis. It plots the estimated

dynamic response coefficients 3;, for horizons h = —2,.. .,

5 to a standardized tariff shock, normalizing the coefficient at h = —1

to zero. 90% confidence intervals are constructed using standard errors two-way clustered at the firm and industry-year levels.
Industries are defined according to the OECD Input—Output table. See the main text for details on variable construction and

sample selection.
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Figure 10: Dispersion in returns to scale, productivity and market concentration

(a) Dispersion in returns to scale and productivity (b) Tail indices of sales and endogenous scalability
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Notes: Panel (a) presents a binned scatter plot of the standard deviation of firm-level returns to scale against the standard
deviation of firm-level productivity, for all sector—year observations. Panel (b) presents a binned scatter plot of the tail index
of firm sales against the covariance between firm-level returns to scale and productivity, for all sector—year observations with
observations more than 50 firms. Year fixed effects are controlled in both panels, the unconditional mean of returns to scale is
added back for interpretability. Sectors are defined as the 62 sectors in the Input—Output table of the Annual Spanish National
Accounts, approximately corresponding to NACE 2-digit industries. Both panels are constructed using a sample of Spanish
firms from Orbis. See Appendix A.1 for details on variable construction and sample selection.

productivity dispersion should also exhibit greater dispersion in returns to scale (Lemma 5). The
first panel of Figure 10 confirms this prediction in the Spanish data. We find a strong positive
relationship between these moments: sectors in the top decile of productivity dispersion have a
standard deviation of returns to scale that is 0.06 higher than those in the bottom decile. This
pattern supports the model’s “double blessing” mechanism which gives rise to superstar firms through
the adoption of high-scalability technologies.

This mechanism also implies that the shape of the firm-size distribution should vary systemati-
cally across sectors. Specifically, Proposition 1 shows that sectors where adopting higher scalability
is easier (high ¢;) should have a thicker right tail of the sales distribution. Since ¢; is not directly
observable, we construct a proxy for the strength of the mechanism: the within-sector covariance be-
tween returns to scale and productivity, Cov (9, € + a (1;)). Theoretically, this covariance should
be strictly positive when returns to scale are endogenous (y; > 0), but zero if returns to scale are
fixed.?> Using this measure, panel (b) of Figure 10 confirms the model prediction: sectors where

firms can more easily adjust their returns to scale display significantly thicker firm-size tails.?

6.5 Cross-country development and endogenous scalability

We conclude this section by providing cross-country evidence for the importance of endogenous
returns to scale in our sample of 24 countries. To ensure comparability, our main cross-country

analysis focuses on manufacturing firms only. For each country, we select the seven-year window

250One can show that in the model this quantity is increasing in ;.
26We use the log-rank tail index estimator of Gabaix and Ibragimov (2011). See Appendix A.5 for details.
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Figure 11: Cross-country evidence on productivity, sales, and returns to scale

(a) Endogenous scalability across countries (b) Economic development and endogenous scalability
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Notes: Panel (a) plots, for each country, the covariance between firm-level returns to scale and log sales against the covariance
between firm-level returns to scale and productivity; dashed lines denote zero covariances. Panel (b) plots the seven-year-avearge
of log GDP per capita against the covariance between firm-level returns to scale and productivity; the solid line reports the
fitted linear relationship and the figure reports the associated R2. Each marker corresponds to a country. See A.7 for details
on variable construction and sample selection.

with the largest number of firm-year observations between 2001 and 2018.2” Within this window, we
estimate size-decile—specific production functions using the same Blundell-Bond procedure described
above to construct firm-level measures of returns to scale and productivity.

Figure 11 summarizes our results. Panel (a) reports the covariance between returns to scale and
log sales, as well as between returns to scale and productivityz.;. Mirroring the Spanish evidence
in Section 6.3.1, we find that in most countries, larger and more productive firms systematically
operate higher returns-to-scale technologies. This suggests that endogenous scalability is at work
in a broad set of countries.

Panel (b) relates the strength of the endogenous returns to scale mechanism to economic develop-
ment. As before, we measure the intensity of endogenous scalability using the firm-level covariance
between productivity and returns to scale. Plotting this measure against log GDP per capita re-
veals a clear relationship: countries with stronger endogenous scalability are systematically richer.?®
This is consistent with the model prediction that endogenous scalability increases the level of GDP.
Quantitatively, variation in this measure explains approximately one quarter of the cross-country
variation in GDP per capita. This suggests that the capacity of productive firms to adopt more

scalable technologies might be an important driver of long-run economic development.

2TFor several countries, the quality of the data is uneven over the sample period. We therefore restrict our analysis
to the time window with the most observations to improve the quality of our estimates. We then apply identical data
cleaning and estimation procedures to all country samples.

28There are two outliers, India and China, but since those countries are at an earlier stage of development, their
lower GDP per capita level might be explained by their distance to the technology frontier.
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7 Calibration to the Spanish economy

To evaluate the quantitative importance of endogenous returns to scale decisions for the macroe-
conomy, we provide a basic calibration of the model to the Spanish economy. We rely on the detailed
firm-level data introduced in the previous section to discipline the parameters of the model. Our

calibration strategy is summarized below, with further details provided in Appendix B.

7.1 Calibration strategy

The preference parameters S can be identified directly from the sectoral consumption shares
provided by the 2010 Spanish National Accounts.?? The input-share matrix o and the firm-level
returns to scale n; are taken directly from our estimates of Section 6. Using firm-level returns to
scale 7;;, we compute each sector’s effective returns to scale 7); as the sales-weighted average of these
firm-level estimates. We find substantial heterogeneity in 7); across sectors, ranging from 0.54 to
0.98, with a mean and median of 0.83 and 0.82, respectively. Figure 16 in Appendix B.4 shows 7};
for all sectors.

The remaining parameters (the productivity dispersion o; and the cost of scalability ;) are
jointly identified by targeting within-sector moments that are informative about scalability choices.
As we show in Appendix B, the model implies a mapping from the pair (;, ;) to the cross-sectional
dispersion of firm-level returns to scale n;; and profits I1;;. Accordingly, we choose ¢; and ~; for each
sector to match the interquartile range of these two variables in the data.’? Appendix B.4 reports
those calibrated values (Figure 15) and shows that the model matches the targeted moments well
(Figure 14). The calibrated model also matches the empirical effective returns to scale 7 perfectly.!

To validate the calibration, we test the model’s ability to reproduce untargeted moments related
to the cross-section of firms. Recall that our mechanism implies a positive sorting where larger firms
operate technologies with higher returns to scale. Panel (a) of Figure 12 compares this relationship
in the model against the data. Although this moment was not targeted, the model replicates the
empirical patterns well. While the fit is less precise for very small firms, these producers account for
a negligible share of aggregate output and thus have little influence on the counterfactual exercises
that follow. The model also generates a steeper relationship between sales and returns to scale than
what we see in the data. This is likely because model firms adjust their scale instantly in response
to productivity shocks, whereas real-world adjustments are subject to frictions and delays.

Panel (b) of Figure 12 shows that the model closely matches the empirical link between pro-

29%We calibrate the model to the 2010 Spanish economy as it is the most recent year with detailed input-output
tables that can easily be matched with the Orbis firm-level data.

30To be consistent with the model, we compute the profits of firm I in sector i as (1 — ;) PiQu. We target
interquartile ranges instead of variances to reduce the impact of outliers.

31 As we study changes to the environment, the results presented below are independent of the average productivity
1 and the entry cost x, and so there is no need to specify their values. Given all the other parameters, we can always
find a combination of u and k to match 7 perfectly.
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ductivity (measured using the Toérnqvist index) and sales. This is reassuring, as the link between
these variables in the model is driven by the endogenous returns to scale parameter 7;.3? Finally,
panel (c) shows that the tail of the firm-size distribution is thicker is sectors where the endogenous

scalability mechanisms is stronger. Once again, the model matches the data reasonably well.

Figure 12: Returns to scale, sales, productivity and tail coefficients in the model and in the data
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Notes: Data correspond to Spanish firms in Orbis; Model corresponds to simulated firm-level outcomes from the calibrated
model. Simulated firm observations are reweighted at the sector level so that the sector composition matches the data. Panels
(a)—(b) report binscatter plots of returns to scale and productivity against sales percentiles. The y-axis variables are residualized
by sector—year fixed effects in the Data series and sector fixed effects in the Model series. Panel (c) plots the tail index of
sales against the within-sector-year covariance of returns to scale and productivity: the Data series uses sector—year statistics
(computed only for sector—years with at least 50 firms) and includes year fixed effects, whereas the Model series uses sector-level
statistics computed from simulated data and includes no fixed effects.

7.2 Contribution of endogenous returns to scale to GDP

Using our calibrated model, we first evaluate the importance of endogenous returns to scale for
the level of GDP. To do so, we compare our calibrated baseline economy to the “fixed returns-to-
scale” counterfactual where each firm’s returns to scale is exogenously fixed at its sector’s average,
ni = 7; (Definition 2). As shown in Proposition 5, the difference in log GDPs between those two
economies is given by

y—gz;wi;u—m)log <1_1S0> (37)
- Sectoral flexibility

Using our calibrated parameters, we find that this gain is 11.7%, so that allowing high-productivity
firms to choose more scalable technologies has a substantial effect on GDP. Figure 17 in Appendix

B.4 decomposes this aggregate gain, showing the contribution of each sector.

32Productivity and returns to scale are also positively correlated in the calibrated model, as they are in the data.
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7.3 Implications for long-run GDP growth

Next, we evaluate the importance of our mechanism for long-run macroeconomic growth. We
conduct an experiment in which we increase the mean productivity u; of all sectors by one percentage
point every year. We then compare the response of GDP in our full model to two counterfactual
benchmarks. The purpose of this exercise is to decompose the full effect of endogenous scalability
into two components: the gain from the initial static dispersion in returns to scale, and the additional
gain from allowing these returns to scale to dynamically adjust over time. Our first benchmark is
the fixed returns-to-scale economy where n;; (t) = 7; (0) for all firms, shutting down both channels.
Growth in this economy is determined by the sum of the sectoral Domar weights, so that g (t + 1) —
g(t) = Zfil w; (0) x 1%. Our second benchmark is a dispersed return-to-scale economy, where 7;
is fixed at each firm'’s initial level n; (t) = n; (0), thus featuring the initial dispersion but not the
dynamic adjustment.??

Panel (a) of Figure 13 shows the evolution of GDP over time in each economy, relative to the
fixed returns-to-scale benchmark. The initial gap at t = 0 reflects the level effect from (37). The
solid blue line captures the full effect of endogenous returns to scale. We see that after one hundred
years, GDP has grown an extra 5.5% in the full model. Panel (c) illustrates the mechanism. As
1 increases, the price of intermediate inputs falls, which incentivizes firms to adopt more scalable
technologies. This increase in returns to scale leads to higher Domar weights, which make the
increase in productivity more impactful.?*

Figure 13 also allows us to decompose this 5.5% gain. It shows that the dispersed returns-to-
scale economy grew by an extra 2.8% over a century compared to the fixed benchmark. This implies
that the static reallocation channel and the dynamic adjustment channel each contribute roughly
half of the total effect. The static channel is powerful because, even when individual 7; cannot
change, the economy-wide productivity boom disproportionately benefits the firms that can scale
more easily—that is, those that started with higher 7; (Lemma 4). As these firms expand their
output disproportionately, their sales shares increase. This compositional shift has two beneficial
effects. First, it endogenously raises the aggregate 7 and Domar weights, which amplifies growth
even though no firm changes its technology. Second, since these high-n firms are also the most
productive, this reallocation of market share directly raises aggregate productivity.3?

Figure 13 also shows that the evolution of log GDP over time in the full model is convex, with
growth constantly accelerating (panel b). This indicates that the effects of endogenous returns to
scale become more and more important over time, with the gap between the three curves in panel

(a) increasing indefinitely. In the long-run, as t — oo, the baseline economy converges to a growth

33We formally analyze this economy in Appendix D.7.

310ver one hundred years, effective returns to scale in the calibrated model increase by about 0.025, which is
within the range found by empirical studies. For instance, De Loecker et al. (2020) find that firm-level returns to
scale increased between 0.01 and 0.1 over periods of 40 to 60 years, depending on the estimation method.

35Endogenous returns to scale are still important in this economy as they create the initial dispersion in 7.
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rate of 3.1% under our parametrization. In contrast, in the fixed returns-to-scale economy, where
the endogenous returns to scale mechanism is shut down, long-run growth is only 2.3%. The large
gap between these two numbers suggests that endogenous scalability might play a significant role

in shaping long-run economic outcomes.?%

Figure 13: Endogenous returns to scale and productivity: Implications for GDP

(a) Log GDP rel. to fixed ret. to scale (b) GDP growth rate (c) Average sectoral ret. to scale
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Notes: Panel (a) shows y (t) — 3 (t) (“Baseline”) and y¢ (t) — ¢ (t) (“Dispersed RTS”) as productivity of all sectors u grows at
1% per year, where y, §, and y* are log GDPs in the economies with fully flexible returns to scale, fixed returns to scale, and
dispersed returns to scale that do not respond to changes in p, respectively. Panel (b) shows growth rates of log GDP and panel
(c) shows % Zi\; 1 7i (t) as productivity of all sectors grows at 1% per year.

7.4 Distorted economy

One implication of our model is that the ability of high-productivity firms to adopt more scalable
technologies is important for the level and growth rate of GDP. Yet, several studies have documented
that larger firms often suffer from higher wedges (e.g., Restuccia and Rogerson, 2008). With en-
dogenous returns to scale, those wedges would disproportionately distort the scalability decisions of
those superstar firms, with potentially large consequences for welfare. In this section, we provide a
simple exercise to quantify this new adverse effect of wedges.

Following Hsieh and Klenow (2009), we compute the sales wedge 7/:5 for firm [ in sector ¢ as the

ratio of the marginal revenue product of labor to the wage:

N
1 it (1 =D =1 aij) PYy
1-75 WLy
Consistent with the literature, we find these wedges to be large. The average sales-weighted wedge
in a sector, %ZS = OMZ' %—%ﬁ’?{? dl, is 0.40 on average across all sectors. Furthermore, wedges are

36 As t — oo, the growth rates in the baseline model and the dispersed returns-to-scale economy converge. In that
limit, output in both economies is dominated by a vanishingly small fraction of extremely productive firms operating
with near-constant returns to scale. In that case, the gains from the dynamic channel of endogenous returns to
scale are exhausted, and both economies grow at the same pace of 3.1%. This convergence, however, is extremely
slow. The half-life of the transition—the time required for the growth rate to close half the gap to its long-run
limit—is approximately one thousand years in the baseline model and two and a half thousand years in the dispersed
returns-to-scale economy.
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positively correlated with firm size: the average within-sector correlation between 7'5 and firm sales
is 0.27.
To study the impact of these wedges in our calibrated economy, we assume that each firm is

subject to a sales wedge

log (1 — 7'5) = log (1 — T,L-S) —b; (eq — i), (38)

where log (1 — Tl-S ) is an average sector-wide term and —b; (g;; — p;) captures size-dependent distor-

tions. With b; > 0, more productive firms face larger distortions. As in the case where the wedge
corresponds to a tax or to a markup, we assume that net revenues collected from 7;; are rebated
to the household lump-sum. We calibrate the intercept TZ-S and the slope b; to match the average
sectoral wedge and the covariance between firm profits and the estimated wedges in the data. After
fixing Tf and b;, we recalibrate the remaining model parameters so that the economy continues to
match our empirical targets. Further details on this procedure are provided in Appendix B.3.

To evaluate the importance of these distortions, we conduct an experiment in which we remove
all wedges.?” The first two columns of Table 1 shows that, in the baseline model, this leads to a large
increase in both returns to scale and in GDP. To understanding the mechanisms behind this result,
the table also reports the outcome of the same experiment in the dispersed and the fixed returns-
to-scale economies. In the dispersed return-to-scale economy, where firms choose their returns to
scale in the presence of wedges but cannot adjust them once wedges are removed, the impact of
eliminating wedges is substantially smaller. In this case, firms at the top of the distribution cannot
increase their scalability to fully benefit from the removal of distortions, which limits welfare gains.
In the fixed return-to-scale economy, where the endogenous scalability mechanism is shut down
entirely, the effect of wedges is even more muted. Because all firms operate with the same returns
to scale, the firm-size distribution is more compressed and GDP is produced more evenly across
firms. Distorting high-productivity producers is thus less damaging in that economy.

To further show that wedges that disproportionately affect the top firms are particularly harmful
when those firms endogenously choose the scalability of their operation, the last two columns of
Table 1 repeat the analysis for an economy with flat wedges (b; = 0). In this setting, productive
firms face no additional penalty relative to smaller firms, so removing distortions yields much smaller
GDP gains. Moreover, the results are nearly identical across the three model specifications. This
confirms that the interaction between endogenous scalability and size-dependent distortions is the
primary driver of our results.

In summary, the quantitative analysis in this section suggests that endogenous returns to scale

might play a substantial role in shaping both the level and the growth rate of GDP. When highly

37For some sectors, removing wedges would push ¢; above one. For these sectors, we set ¢; = 0.99. We conduct
sensitivity analysis to the value of this threshold in Appendix B.5.
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productive firms are able to adopt more scalable technologies as the technological frontier advances,
they can expand disproportionately, with substantial gains for welfare and GDP growth. Taxes
or distortions that fall on those firms, however, can disrupt this process. As our results show,
size-dependent distortions discourage the adoption of high-scale technologies, stifle the growth of
superstar firms, and generate efficiency losses that can exceed those in standard models. Policy
interventions that disproportionately burden high-productivity firms may therefore be particularly

harmful for welfare.

Table 1: Returns to scale and GDP when wedges are removed

Size-dependent wedges Flat wedges
A Ret. to scale A GDP A Ret. to scale A GDP
Baseline economy 0.067 167% 0.020 62%
Dispersed ret. to scale 0.046 138% 0.010 60%
Fixed ret. to scale 0 70% 0 58%

Notes: Increases in average effective returns to scale, A [Zf\jzl ﬁi/N], and in log GDP, Ay, due to removal of sales wedges in

the baseline economy, and in the economies with fixed and dispersed returns to scale. The “Size-dependent wedges” column
reports the results when sales taxes are correlated with firm productivity. The “Flat wedges” column reports the results when
sales wedges are identical for all firms within a sector.

8 Conclusion

This paper develops a theory in which returns to scale are endogenous equilibrium objects driven
by incentives. At the micro level, this mechanism gives rise to superstar firms and fat-tailed firm-
size distributions. At the macro level, it endows the economy with greater resilience by dampening
the impact of adverse shocks while amplifying favorable ones. It also provides an engine for long-
run growth, as the economy’s organizational structure co-evolves with its technological frontier.
Input-output connections between sector play a crucial role for these mechanisms.

Several extensions would be worth pursuing. First, introducing capital would change the incen-
tives to increase returns to scale. Since capital can be accumulated, its presence might affect the
long-run growth properties of the model. Second, the superstar firms that emerge in our model
might, in reality, gain market power, creating a feedback effect that would further increase their
incentives to scale. Third, while we have modeled the choice of scalability as a single, abstract
decision, future work could explicitly model the distinct margins through which firms achieve scale,
such as building distribution networks, creating hierarchical organizations, and many others. Mod-
eling these individual margins would allow for a more precise contact with the data and a deeper

understanding of forces shaping returns to scale.
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Online Appendix

A Appendix for Section 6

This appendix contains details about the reduced-form results of Section 6.

A.1 Details of the Spanish Orbis data

Our Spanish firm-level data are drawn from the Orbis Historical Disk. Orbis is commonly
regarded as the most comprehensive cross-country firm database, covering both public and private
firms’ financial statements and measures of real activity (Kalemli-Ozcan et al., 2024). We focus on
Spain because firm coverage is close to universal-—capturing over 95% of total industry gross output
after 2010—making it well suited for economy-wide analysis. Our sample spans 1995-2019.38
Sample cleaning Our sample construction closely mirrors the cleaning steps used in our earlier
work (Kopytov et al., 2024b). We begin by merging each firm’s descriptive information with its
financial statements using the unique BVD firm identifier (BVDID). We then restrict our analysis to
Spanish firms, defined as firms that satisfy two criteria: 1) their latest address is in Spain and 2)
their BVDID starts with the ISO-2 code ES. In the resulting Orbis Spain sample, we implement the

following standard cleaning procedure:

1. We harmonize the calendar year of each firm-year observation using the variable
closing_date: if the closing date is after or on July 1, the current year is assigned as the

calendar year. Otherwise, the previous year is assigned.?”

2. In a given year, a firm in the Orbis database might have multiple financial statements from
different sources (local registry, annual report, or others), for consolidated or unconsolidated
accounts. When several source-consolidation combinations exist for a firm, we deduplicate
by selecting the account that, in order of priority, 1) shows the most consistent reporting
frequency (closest to regular annual reporting), 2) offers the longest non-missing time series
for key financial variables (fixed assets and/or sales), and 3) is consolidated, if the first two

criteria are tied.

3. We only keep firms with non-missing and positive sales (operating_revenue_turnover),

fixed assets (fixed_assets), wage bills (costs_of_employees), and material costs

380rbis offers good coverage of the Spanish economy starting from 1995. Moreover, the most recent observations
in the version of Orbis Historical Disk Product that we use are from 2021. We therefore use 2019 as the last year
of the sample since there is usually a two-year reporting lag for some variables (see Kalemli-Ozcan et al. (2024) for
details).

39This adjustment matters little for the Spanish sample, as 99% of firms close their books on December 31.
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(material_costs). We also harmonize the units of all monetary values to be in current

euros.

4. To prevent outliers from affecting the production function estimation, we exclude any firm-year
observation whose average revenue product for any input (fixed assets, wage bills, or material

costs) lies above the 99th percentile or below the 1st percentile of that year’s distribution.

A.2 Details of the production function and RTS estimation

This appendix describes in detail how we implement the production-function estimation proce-
dure that delivers the results used in the main text.

We use the Blundell and Bond (2000) IV-GMM estimator to estimate the production functions
as our benchmark. This estimator is designed for dynamic panel settings with persistent firm-level
variables and, under standard moment conditions, delivers consistent estimates of output elastici-
ties. Our model imposes a competitive output market in a sector. In this setting, the identifying
assumptions are most plausible when there is sufficient persistent variations in predetermined inputs
and in the cost of flexible inputs, so that observed input choices are not collinear with unobserved
productivity. Recent work by De Ridder et al. (2022) further shows in Monte Carlo simulations
that this approach performs well when such identifying variation is strong.

Our empirical strategy builds on the model’s implication that, within a sector, firms that are
similar in size should operate under similar production technologies and therefore exhibit similar
returns to scale. We use this prediction to estimate returns to scale across the firm-size distribution.
For each sector i and year ¢, we rank firms by a smoothed measure of size: the 7-year moving average
of firm-level log sales computed over the window t — 3 to t + 3. We then assign firms to 10 deciles,
d; = {1,...,10}, based on this sector-year ranking.*’ Using a moving average reduces the influence
of short-run fluctuations and measurement error in annual sales, and thus provides a more stable
proxy for the scale of a firm’s production. For each sector-decile-year cell (i,dy,t) (using the 7-year

rolling sample around t), we assume firms share a common Cobb-Douglas technology:

40We reassign a few small sectors with few firms to closely related sectors that produce similar goods or services,
for the purpose of production function estimation. Specifically, (i) we merge sectors 5, 6, 7, and 9—Manufacture
of food products, beverages and tobacco products; Manufacture of textiles, wearing apparel and leather products;
Manufacture of wood and of products of wood and cork (except furniture); manufacture of articles of straw and plaiting
materials; and Printing and reproduction of recorded media—into sector 8 (Manufacture of paper and paper products).
(ii) We merge sector 12—Manufacture of basic pharmaceutical products and pharmaceutical preparations—into sector
11 (Manufacture of chemicals and chemical products). (iii) We merge sector 20—Manufacture of motor vehicles,
trailers and semi-trailers—into sector 19 (Manufacture of machinery and equipment n.e.c.).
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where, under our assumption, the AR(1) productivity structure implies restrictions across coeffi-

cients (e.g., a®() = pide) and Bld Ot = —phdell B‘”O , for x € {L, K, M}).

Blundell-Bond system-GMM moments We now describe the system-GMM moment condi-
tions we exploited to estimate the model in (40). Our choice of moment conditions follows the exact
implementation in Table III column 5 of Blundell and Bond (2000), where we treat {¢,[, k,m} as
potentially endogenous and use two sets of moments:

(i) Difference equation (levels dated ¢ — 2 and earlier):

E|2ii—s Aezlft() =0 forze{ql,k,m} and s > 2. (41)

(ii) Levels equation (first differences dated ¢ — 1 only):
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E[Awil’t,l ( :; Al) ;l?t(l))} =0 forze{q,l,k,m}. (42)

Moreover, year dummies are included as controls and treated as exogenous instruments in the

levels equation. We implement this estimation using the xtabond2 command in Stata.

Obtaining the Firm-level Returns-to-Scale Estimates After estimating (40), we then use
the minimum distance estimator by Séderbom (2009) to impose the AR(1)-implied restrictions and
get the restricted parameter estimates (ﬁi’dt(l),ﬁﬁit(l) b AiLdt(l) ” A%t(l) t). The estimated returns to

scale n;;; for a firm [ in sector ¢ and year t is therefore given by the sum of these elasticities:

AM
Nilt = Bz (D)t T 51 a0t t ﬁi,dt(l),t'

Because 1995 and 1996 contain relatively few firm-year observations for production-function esti-
mation, we report results using only the 1997-2019 estimates matched to the firm-level data for our

analysis.

A.3 Constructing the Tornqvist productivity index

To compare productivity across firms, we rely on the Térnqvist productivity index. We provide
here theoretical results about that index to link our model with our estimation procedure.

Lemma 3 shows that returns to scale are increasing in ¢;;, but we do not observe ¢;; directly in
the data. In addition, comparing measured productivity e A; (n;;) ¢ (n;) across firms with different
technologies faces well-known issues about the choice of units. When going to the data, we rely
instead on a Tornqvist productivity index, which is commonly used to compare productivities across
firms or countries with different production functions (Caves et al., 1982a,b) and recently in Penn
World Table by Feenstra et al. (2015). Specifically, we use the multilateral Tornqvist productivity
index by Caves et al. (1982a) that has been extensively used in the firm dynamics context (Baily
et al. 1992, Griliches and Regev, 1995 and Aw et al., 2001).

Definition 3 (Multilateral Tornqvist productivity index). Consider a sector i in year t. Let N;; be
the number of firms observed in (i,t). Define the sector-year reference firm’s moments as log Q;; =
N%t Zl log Qiit, log Oy = N%t Zl log Oy, ﬁT,it = N%t Zl Bo,iit where O € {K,L,M} and Bo i are
firm-level output elasticity of input O. The multilateral Térnqvist productivity index of firm [ is
defined as:

Zilt = (log Qiie — log Qz‘t) - Z 5 (50 at + Bo zt) (log Ojy — log Oit) .
Oc{K,L,M}

[\
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For any two firms k and [ in sector ¢ and year ¢, we say firm k is more productive than firm [ if

Zikt > Zilt-

Intuitively, the measure z;;; compares productivity between firm [ and the reference firm by
looking at how much more output one produces relative to the other, adjusting for differences in
technology and input use. It is "multilateral" because z;; is defined relative to a common sector-
year reference firm constructed from all firms in (i,t), so productivity comparisons z;x; — 2;; are
base-firm invariant and can be consistently ranked across all firm pairs. In our benchmark case, we
set all Bo i = Bi(,)dt (O to obtain the estimated productivity index Z;;; and use it as our measured
productivity in all cross-sectional exercises that involve comparisons between firms within a sector-
year. We find the Toérnqvist index to be a good proxy for productivity in model-simulated data. In
our calibrated economy of Section 7, the within-sector correlation between the Térnqvist index and
gi1 is above 0.99. The same number for ;; + a; (1,,) is about 0.92.

However, when analyzing within-firm productivity changes over time, we use a chained (within-
firm) Tornqvist productivity index—i.e., an approximate Divisia index—following the implemen-

tation in Star and Hall (1976). Specifically, to account for the fact that firms may simultaneously

adjust both their technology (and hence elasticities) and their input mix, we define

. - 1. R
AR — Aog Quy — Z Bo,atAlog Oye,  where Bo i = 3 (@%t(l),t + /Bi?dtfl(l)ﬂffl)'
Oe{K,L,M}

We then normalize each firm’s initial (log) within-firm productivity to zero and construct the level

index égtlthm by accumulating changes over time, i.e.,

swithin __ swithin ~within swithin  __
ar = g FAZTT L 2 =0

This normalization is innocuous because our within-firm analysis in 6.3.2 include firm fixed effects,

so only productivity changes (not the level) are identified.

A.4 Robustness of the production function and RTS estimation

This section shows that the documented positive RT'S-size and RTS-productivity relationship,
both across firms in the cross-section (Section 6.3.1) and within a firm over time (Section 6.3.2),
are not driven by a particular estimator, IV-GMM instruments choice, or grouping design. We
first vary the Blundell and Bond (2000) system-GMM specification by changing the treatment of
year dummies and the internal instrument set, following the implementation in De Ridder et al.
(2022) (Appendix A.4.1). We then re-estimate production functions using standard control-function
approaches—Olley and Pakes (1996) and Levinsohn and Petrin (2003)-to verify that our results are
not specific to IV-GMM (Appendix A.4.2). Moreover, we account for potential market power
by adding markup controls (proxied by sales shares) within an Ackerberg et al. (2015) estimator
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(Appendix A.4.3). Finally, we show that our conclusions are robust to alternative ways of forming
size groups (Appendix A.4.4).

We report coefficients from simple regressions to summarize robustness of our empirical findings
both across firms and within firms with these alternative estimates of returns to scale and pro-
ductivity. To show robustness for 7, which documents the cross-sectional pattern that larger and
more productive firms have higher returns to scale within a sector-year, we estimate two simple

regressions of returns to scale on log sales and productivity:

Nt = Bo log (Sales;y) + 04 + €y Nie = B1Zie + O + €y, (43)

where §;; denotes sector-year fixed effects. The estimated coefficients of 5y and 8y are displayed in
2 across all specifications.
Similarly, to show robustness for 8 and document our within-firm pattern that firms have higher

returns to scale when they grow larger or become more productive, we estimate:

N = Yo log (Sales;i) + kit + O + €z, Nite = V12000 g+ Gyt + €, (44)

where k; denotes firm fixed effects, so identification comes from within-firm variation over time. In
the productivity specification, we use a within-firm T6rnqvist productivity index, éﬁgthin , which is
appropriate for within-firm comparisons. The estimated coeflicients of g and ~; are presented in 3
across all specifications.

Results using our benchmark estimator are reported in column (1) of Tables 2 and 3. We now

describe the alternative estimators and grouping designs used in the robustness checks.

A.4.1 With alternative Blundell-Bond specifications

Our baseline specification follows Blundell and Bond (2000) and includes year dummies. Includ-
ing year effects is recommended in dynamic-panel GMM applications because it absorbs economy-
wide shocks and thereby reduces cross-firm correlation in the regression residuals. At the same
time, once common year shocks are removed, identification of flexible-input elasticities relies on
variation that is not common across firms in a group. In practice, this shifts weight toward per-
sistent within-year differences in flexible input costs or wedges across firms. If such variation is
interpreted literally as firm-specific input prices, it can raise concerns about measurement—because
input quantities constructed from expenditures may mechanically inherit noise from unobserved

firm-level prices. 4!

“However. if the relevant heterogeneity operates through non-monetary wedges—e.g., distortions that affect
effective input costs without changing the recorded unit prices paid by the firm, in the spirit of Hsieh and Klenow
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Table 2: Across-firm variation in returns to scale, productivity, and firm size with alternative
production function estimators

Dependent variable: Firm-level RTS

(1) BB (2) BB (3) OP (4) LP (5) ACF (6) Av.-size (7) Cur.-size
baseline  alternative market power percentiles deciles
log (Sales;;) 0.023*** 0.028*** 0.045**  0.037*** 0.050*** 0.019*** 0.007***
(0.001) (0.001) (0.001) (0.001) (0.000) (0.001) (0.001)
Sector-Year FE Yes Yes Yes Yes Yes Yes Yes
Observations 9,424,952 9,424,952 9,424,952 9,424,952 9,424,952 9,424,952 9,424,952
R? 0.688 0.688 0.642 0.806 0.564 0.728 0.655
Zit 0.050*** 0.058*** 0.083***  0.080*** 0.091*** 0.034*** 0.021***
(0.002) (0.003) (0.002) (0.003) (0.005) (0.002) (0.002)
Sector-Year FE Yes Yes Yes Yes Yes Yes Yes
Observations 9,424,952 9,424,952 9,424,952 9,424,952 9,424,952 9,424,952 9,424,952
R? 0.655 0.648 0.567 0.760 0.507 0.684 0.652

Notes: This table reports coefficients from cross-sectional regressions of firm-level returns to scale (RTS) on (i) log sales and
(ii) firm productivity (%Z;;¢), each including sector-year fixed effects. Column (1) uses our benchmark Blundell-Bond (BB)
estimates; column (2) uses an alternative BB specification as implemented in De Ridder et al. (2022). Columns (3) and (4)
use the Olley-Pakes (OP) and Levinsohn-Petrin (LP) control-function estimators, respectively. Column (5) reports results from
the Ackerberg-Caves-Frazer (ACF) estimator with market power controls (proxied by firms’ sales shares). Columns (6) and (7)
use alternative grouping methods for estimating elasticities: rolling average-size percentiles and contemporaneous size deciles.
The regressions use a sample of Spanish firms from Orbis. See Appendix A.1 for details on variable construction and sample
selection. Standard errors (in parentheses) are two-way clustered at the firm and sector-year level. * ** *** indicate significance
at the 10%, 5%, and 1% levels, respectively.

As a robustness check, we therefore also implement the Blundell-Bond estimator specification
used by De Ridder et al. (2022), which omits year dummies and uses a more conservative internal-
instrument set. Concretely, our baseline estimates a dynamic sales equation with current and one-lag
terms for labor, capital, and materials, includes year fixed effects, and instruments the endogenous
variables with lags starting at t —2 (and deeper) in the transformed equation, while treating the year
dummies as standard instruments in the levels equation. In contrast, the De Ridder et al. (2022)
specification removes year dummies and restricts the GMM-style instruments to a single deeper lag
(the third lag) for output and inputs. Relative to our baseline, this alternative places less weight
on within-year cross-sectional price/wedge variation as the driver of instrument relevance and also
reduces instrument proliferation by construction. The results using the alternative Blundell-Bond

estimates are reported in column (2) of Tables 2 and 3.

A.4.2 With different production function estimators

We also use other commonly used production function estimators as robustness check. In par-
ticular, we consider the control-function approach and implement the Olley and Pakes (1996) and

Levinsohn and Petrin (2003) estimators.

(2009)—then this concern is mitigated because observed input quantities are not mechanically distorted by unobserved
prices.
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Table 3: Within-firm variation in returns to scale, productivity, and firm size with alternative
production function estimators

Dependent variable: Firm-level RTS

(1) BB (2) BB (3) OP (4) LP (5) ACF (6) Av.-size (7) Cur.-size
baseline  alternative market power percentiles deciles
log (Sales;;) 0.013*** 0.018*** 0.022*** 0.019*** 0.027*** 0.010*** 0.004***
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Firm FE Yes Yes Yes Yes Yes Yes Yes
Sector-Year FE Yes Yes Yes Yes Yes Yes Yes
Observations 9,248 461 9,424,952 9,248,461 9,248,461 9,424,952 9,248,461 9,248,461
R? 0.799 0.813 0.875 0.927 0.693 0.853 0.739
Zilt 0.008*** 0.008*** 0.012%** 0.014*** 0.021*** 0.005*** 0.004***
(0.000) (0.001) (0.000) (0.001) (0.001) (0.000) (0.001)
Firm FE Yes Yes Yes Yes Yes Yes Yes
Sector-Year FE Yes Yes Yes Yes Yes Yes Yes
Observations 5,254,839 5,254,839 5,254,839 5,254,839 5,254,839 5,254,839 5,254,839
R? 0.829 0.845 0.911 0.947 0.741 0.882 0.768

Notes: This table reports coefficients from within-firm regressions of firm-level returns to scale (RTS) on (i) log sales and (ii)
within-firm productivity, each including firm fixed effects and sector-year fixed effects. Column (1) uses our benchmark Blundell-
Bond (BB) estimates; column (2) uses an alternative BB specification as implemented in De Ridder et al. (2022). Columns
(3) and (4) use the Olley-Pakes (OP) and Levinsohn-Petrin (LP) control-function estimators, respectively. Column (5) reports
results from the Ackerberg-Caves-Frazer (ACF) estimator with market power controls (proxied by firms’ sales shares). Columns
(6) and (7) use alternative grouping methods for estimating elasticities: rolling average-size percentiles and contemporaneous
size deciles. The regressions use a sample of Spanish firms from Orbis. See Appendix A.l for details on variable construction
and sample selection. Standard errors (in parentheses) are two-way clustered at the firm and sector-year level. *,** *** indicate
significance at the 10%, 5%, and 1% levels, respectively.

The Olley-Pakes Estimator We first implement the Olley and Pakes (1996) (OP) estimator
to estimate the production function for each sector—decile-year cell. The Olley and Pakes (1996)
estimator is a semiparametric control-function method that addresses simultaneity bias, since unob-
served productivity affects firms’ input choices. It assumes that investment is a function of capital
and productivity and, under a monotonicity condition, can be inverted to express unobserved pro-
ductivity in terms of observed investment and capital. Substituting this inverted control function
into the production function, the method first estimates the elasticities of freely adjustable inputs
(labor and materials in our case) while controlling for productivity, and then uses a Markov assump-
tion on productivity to recover the coefficient on the quasi-fixed input, capital. To implement this
approach, we measure real investment as the change in the capital stock net of depreciation, and
we recognize that this can generate zero or negative investment values, which reduces the usable

sample. The results using the OP estimator are reported in column (3) of Tables 2 and 3.

The Levinsohn-Petrin Estimator Because investment can be lumpy in practice and the Olley
and Pakes (1996) procedure may force us to drop observations with zero or negative investment,
we also apply the Levinsohn and Petrin (2003) (LP) estimator as an additional robustness check.

Instead of using investment, this method uses intermediate inputs (materials in our case) as the
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control variable. It assumes that materials are flexibly chosen after observing productivity, while
capital is still treated as quasi-fixed. Under the assumption that materials demand is a function
of capital and productivity and is monotone in productivity (conditional on capital), the materials
demand function can be inverted to recover unobserved productivity. This control function allows
consistent estimation of the labor elasticity, and additional moment conditions then recover the
elasticities of capital and materials. The results using the LP estimator are reported in column (4)
of Tables 2 and 3.

A.4.3 With controls for market power

Our model abstracts from market power and markups, but these forces could hinder the iden-
tification of output elasticities and obscure the positive RTS—size relationship we identify in the
cross section. When firms have market power, they may charge different output prices, so elastici-
ties estimated using deflated sales can be closer to revenue elasticities rather than physical output
elasticities.

That said, we expect this channel to be unlikely to explain our results. Under monopolistic
competition, larger firms typically have higher markups. Higher markups mechanically dampen
the sensitivity of revenue to input expansion, implying lower revenue elasticities for larger firms
relative to smaller firms. If anything, this would bias against finding a positive RT'S—size relation-
ship. Therefore, the presence of markups would tend to weaken our estimated positive RT'S—size
relationship, suggesting that the underlying relationship could be even stronger.

Nonetheless, we follow common practice and re-estimate the production function with explicit
controls for market power, treating price variation as an additional measurement component to be
partialled out. Specifically, following Baqaee and Farhi (2019b) and De Loecker et al. (2020), we
control for markups using firms’ sales shares (measured at the NACE 3-digit and 4-digit levels) and
estimate production functions using the Ackerberg et al. (2015) (ACF) estimator. The results using
the ACF estimator are reported in column (5) of Tables 2 and 3.

A.4.4 With different size-based grouping methods

Grouping firms by 7-year average sales percentiles Our benchmark approach groups firms
in sector ¢ and year t into deciles based on their 7-year average log sales. While straightforward,
this discretization can generate non-smooth variation across firm sizes. As a robustness check, we
therefore implement a rolling-percentile approach based on firms’ 7-year average sales. For each
sector-year, we rank firms into 100 percentiles using their 7-year average (log) sales. In each sector
i, for each percentile p;, we construct a local sample consisting of firms whose percentile rank lies
between p; — 15 and p; + 15 in year t. We then estimate output elasticities for each cell (i,t, p;)

using the Blundell-Bond estimator on the corresponding 7-year rolling-window sample. The results
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using the rolling-percentile grouping approach are reported in column (6) of Tables 2 and 3.

Grouping firms by contemporaneous sales deciles Alternatively, we group firms into deciles
based on contemporaneous firm-level (log) sales in year ¢, rather than the 7-year average. We then
estimate output elasticities for each cell (4, ¢, d;) using the same Blundell-Bond estimator on a 7-year
rolling-window sample. The results using the contemporaneous sales-decile grouping approach are

reported in column (7) of Tables 2 and 3.

A.4.5 Summary

Overall, the main empirical patterns are robust. Across all alternative production-function
estimators (alternative Blundell-Bond specifications, Olley-Pakes, Levinsohn-Petrin, and ACF with
market-power controls) and alternative grouping methods (rolling percentiles and contemporaneous
deciles), we continue to find a positive relationship between firm-level returns to scale and firm size,
as well as between returns to scale and productivity, both in the cross section within sector-years
and within firms over time. While magnitudes vary across specifications, the sign and statistical

significance of these relationships are stable (see Tables 2 and 3).

A.5 Estimation of the tail index

This appendix describes how we estimate the tail index of the firm-size distribution in each
sector-year using the log-rank estimator of Gabaix and Ibragimov (2011). For each sector i and
year t, let S;; denote firm [’s sales, and let N;; be the number of firms observed in (7,t). We assign
ranks r = 1,..., N according to their sales, where r = 1 corresponds to the firm with the largest
sales. Let Sj1); > Sj2yr = -+ = Si,,)t denote sales sorted in descending order within sector-year
(i,t).

We focus on the right tail of the sales distribution and select the tail sample as follows: If
Ny > 5000, we use firms in the top 1% of the sales distribution in (7,¢). If Ny < 5000, we use
the 50 firms with the largest sales in (i,¢).*> For each sector-year (i,t), we estimate the Pareto
tail index (;; within the tail sample using the Gabaix and Ibragimov (2011) bias-corrected log-rank

regression:

1
log <7’ - 2) = @it — Git 10g Si(ryt + Uirt. (45)

This regression relates the log bias-corrected rank log (7“ - %) to log sales. We recover Zz't as the

negative of the OLS slope coefficient on log Sj(,); and use it as the tail index of sales in 10.

42Tf fewer than 50 firms are observed, we use all available firms.
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A.6 Details of the imported input tariff shock exercise

This appendix provides additional details on the imported-input tariff shock used in Section
6.3.2. Our goal is to measure changes in input costs driven by changes in import tariffs. To isolate
variation that differs across downstream sectors and over time, we construct a shift-share exposure
measure that combines (i) predetermined import input shares from the OECD multi-country input—
output tables and (ii) tariff changes from the Global Tariff Project (Teti, 2024).

Let downstream sectors in Spain be indexed by 4. Index a foreign exporter-sector pair by
n = (¢, s), where ¢ denotes the exporting country and s the exporting sector. For each Spanish

downstream sector ¢ and year ¢, we define the tariff-based input cost shifter as

log T = Z (ImportShare%ggegﬁi?ft(eQ S)i-1" log(l + TariﬁRate?Eiii)), (46)

c,s

Intermediate

(Spain.i)4r(e,s),t—1 is the share of sector i’s total intermediate inputs imported from

where ImportShare
exporter-sector n = (¢, s), measured in year ¢t—1 using the OECD multi-country input-output tables.
TariﬁRate(Sg 31; is the ad valorem tariff rate applied by Spain to imports from exporter-sector (c, s)
in year t, taken from the Global Tariff Project. Sector ¢ and foreign sectors s are defined according
to the OECD input—output classification, which is slightly more aggregated than the NACE 2-digit
level. When tariff data are available at a more disaggregated level in Teti (2024), we aggregate to
(¢, s) using a simple (unweighted) mean across subsectors. Note that log T}, is essentially a weighted
average of log tariff factors across upstream foreign inputs, with weights given by the downstream
sector’s lagged import input structure. It rises when tariffs increase on inputs that the sector ¢ relies
on more intensively. The shift-share structure uses lagged import shares to reduce concerns that
contemporaneous changes in sourcing respond mechanically to tariff changes.

We then estimate the dynamic impact of these shocks on returns to scale using panel local

projections for horizon years h = —2,...,5:

Nitt+h — Nit—1 = Br1og Tie + Yin + Ven + €ittn,

controlling for firm (v;;,) and year () fixed effects. Under the assumption that tariff changes for
a given exporter-sector pair (c, s) are not systematically correlated with unobserved, time-varying
shocks to Spanish downstream sector ¢ (conditional on these fixed effects), variation in log 7;; pro-

vides plausibly exogenous movements in input costs across sectors and over time.

A.7 Details of the cross-country firm-level data

This appendix describes the firm-level data sources and sample construction for our cross-country
analysis. We augment the analysis with firm-level data from a total of 24 countries (including Spain).

For 22 Furopean countries, we use Orbis and restrict attention to countries with good coverage of
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the variables required for production-function estimation. For developing countries, we use China’s
National Bureau of Statistics (NBS) manufacturing firm database and India’s Annual Survey of
Industries (ASI). Both the NBS and ASI datasets are censuses of above-scale manufacturing firms.
To make cross-country comparisons comparable, we restrict all datasets to manufacturing firms. For
each country, we select a seven-year window that maximizes the number of firm-year observations.

We briefly discuss the data cleaning below.

Orbis For Orbis, we start from the raw firm-year panel for each country and apply the same
four-step cleaning procedure used in Section A.1 for Spain. We then (i) restrict the sample to
manufacturing firms (corresponding to USSIC codes 2000-3999) and (ii) deflate all nominal financial
variables using the country-specific GDP deflator from the World Bank. After cleaning and deflation,
we implement the seven-year window selection described above and keep the window with the largest

number of firm-year observations for each country.

India ASI Our India data come from the Annual Survey of Industries (ASI) for 1998-2018. We
harmonize industry codes to NIC-2004 and then map them to the USSIC division level, retaining
only manufacturing divisions. We measure sales using the gross sale value of all products. We
measure capital using the average of the opening and closing gross book value of total capital.
We measure labor using total wage bills. All variables are deflated using India’s GDP deflator
from the World Bank. We then select the seven-year window with the largest number of firm-year

observations (2012-2018).

China NBS The China data are annual firm-level surveys collected by the National Bureau
of Statistics (NBS). We use the 1998-2007 sample period. We measure sales using product sales
revenue, capital using total fixed assets, and labor using total annual wages payable. Firms are
classified by a four-digit Chinese Industry Classification (CIC) code, which we harmonize to the
USSIC division level. We retain manufacturing divisions only. All nominal variables are deflated
using China’s GDP deflator from the World Bank. We then select the seven-year window with the

largest number of firm-year observations within the available sample period (2001-2007).

Production function and RTS estimation We estimate production functions using the
Blundell-Bond approach, following our baseline estimation strategy. We treat manufacturing as
a single sector within each country. For each country ¢, let [t,(c) — 3, tm(c) + 3] denote the selected
seven-year window and t,,(c) is the median year of that window. We only estimate production func-
tions for firms existing in the median year ¢,,(c). We group firms into deciles for year t,,(c) based
on their seven-year average log sales. We then estimate a decile-specific Cobb-Douglas production

function using the full seven-year panel.
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Let 300 A1) b () denote the estimated output elasticity of input O € {K, L, M} for country ¢ and
sales decile d. The returns to scale assigned to firm [ in country ¢ at year t,,(c) is computed as the

sum of the estimated input elasticities:

Nelty (c) = Bc{(d(l),tm(c) + BcL,d(l),tm(c) + Aé‘,dd(l),tm(C)'

We then construct the Tornqvist productivity index z,, () using these estimates and compute the
covariance between returns to scale and log sales, as well as between returns to scale and productivity
Zeltn (c) used in 11 panel (a). In panel (b), we plot the seven-year average (t,(c) — 3 to t,,(c) +3) of
log GDP per capita obtained from Penn World Table version 11.0 against the covariance between

returns to scale and productivity Zu,,, (c)-

B Appendix for Section 7

This appendix contains details about the calibration of Section 7.

B.1 Calibration data

This appendix describes the datasets used in the calibration and how the associated sectoral

moments are computed.

1. We calibrate the sectoral parameters using the 2010 input-output table from the Annual
Spanish National Accounts. This table partitions the Spanish economy into 62 sectors which
are usually defined at the 2-digit NACE industry level.*> Conforming to the accounting
conventions in the data, we calibrate the input elasticities of good s’ in the production of

sector s as

Input from s" at basic prices, "

~

aSS/ =

Total input at basic prices,
Intermediate consumption at purchaser’s prices,

Intermediate consumption at purchaser’s prices, + total labor expenditure,

and the labor elasticity as

1 N total labor expenditure,
_ E Browt =
" 5 Intermediate consumption at purchaser’s prices, + total labor expenditure,’

43Sector 63 (household-related production activities) and sector 64 (services by extraterritorial organizations and
bodies) are also present in the 2010 input-output table, but their input-output data is missing.
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corresponds to the labor share of total cost in the data.*%> We calibrate the consumption
share s to be the share of final consumption expenditure of good s in the sum of consumption

expenditure spent on the 62 sectors.

2. We compute cross-sectional moments from the Orbis sample. After steps 1-4 in Appendix A.1

and the production function estimation in Appendix A.4.1, we perform a few additional steps:

(a) We winsorize the estimated returns to scale 7;; at the top or bottom 0.5% of the firm-
year distribution. In addition, we cap values above 0.99 at 0.99. Using firm-level returns
to scale n;;;, we compute each sector’s effective returns to scale 7 as the sales-weighted

average of these firm-level estimates.

(b) We compute profits as I;;; = (1 — ny¢) PitQqr and winsorize it at the top or bottom 0.5%

within each sector—year.
(¢c) We then compute the interquartile range of IL;;; and 7;; at the sector-year level.

(d) Finally, we average these sector—year moments over time to obtain sector-level moments

used in our static model.

B.2 Interquartile ranges for returns to scale and profits

From (12), we have

1
na=1- =g | eu—pi’
l_fﬁ + - ZQ’YZH
which implies?6
1 1
IQR (ni) = 1—5—— s P ; (47)
2+ 201 (0.25) =2+ -0 1(0.75)

where @ (-) is the cumulative distribution function of the standard normal random variable.

Profit of firm [ in sector i is given by (55). Plugging (10) and (12) in this expression, we get

log IT;; =

1— ¢ 2
2, — i +eq) +logH, 48
I ( T m+€zz> + log H;, (48)

44Because sector-to-sector data at purchasers’ prices (i.e., adjusted for taxes less subsidies on products) are un-

available, we calibrate the intermediate-input expenditure share of inputs from sector s’ used by sector s with the
Input from s’ at basic pricesg
Total input at basic prices, *

4>We deliberately omit capital in this calibration because the Spanish input—output table does not distinguish the
user cost of capital from profits.

46For or all firms with n; € (0,1), ny is strictly increasing in €;;. In the calibrated economy, the fraction of firms
with 7, ¢ (0, 1) is very small.

share computed in basic prices,
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which implies?”

2
_ 05 -1 -1
IQR (logIl;) = —* sz(m(l—w)) (0.75) — F (2%(1_%)) (0.25) |, (49)
1

X1

Ay
i o (1) i o (1-1;)

where Fla (-) is the cumulative distribution function of noncentral x? distribution with one degree

o2

Equations (47) and (49) make clear that IQRs of returns to scale and log profits are functions of

of freedom and the non-centrality parameter x, and p; =

0i, Y, and 7;. We can, therefore, use them to identify o; and ;. We choose o; and ~; to minimize
the distance between model-implied and empirical IQRs, with a constraint ¢; € [0, 1] Vi. Figure 14
shows that the calibrated model matches the targeted IQRs well.

Figure 14: Interquartile ranges in returns to scale and profits

(a) Returns to scale (b) Log profits
T 5 T
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Notes: Panels (a) and (b) report sectoral interquartile ranges in returns to scale and log profits in the calibrated model and in
the data.

Figure 15 shows calibrated values of o; and ~; for all sectors. The sector with most volatile
productivity is “Petroleum”, with o; = 3.09. At the same time, this sector has a high cost of
adjusting returns to scale, 7; = 7.24, meaning that its effective productivity dispersion is not too

large, ¢; = 0.66.

B.3 Calibration details for Section 7.4

We analyze the model with sales tax in Appendix D.6. In that appendix, we show that the

model with sales taxes can be analyzed analogously to the main model if we properly redefine the

“TFrom (10) and (12) , 2v; 11:“;77 — i + €y > 0 for all firms with n; € (0,1). For these firms, logIl;; is strictly
increasing in ¢;;. In the calibrated economy, the fraction of firms with 7, ¢ (0,1) is very small.
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Figure 15: Calibrated ; and o;

(a) Calibrated ~;

(b) Calibrated o;
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i + log (
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We can identify &; and ~; in the same way as described in Appendix B.2. The only difference is

).

To pin down the parameters of the tax process (38), we proceed as follows.

that we need to use after-tax profits in (49

In the data, we

compute the covariance of pre-tax profits with log (1 — 7'5 ) for each sector. Using (48), we can

compute the model analogue of this quantity as

D) -

En| —log (1 — 7'5) ,log (1 -7

— i +

1—-0b;

i
m;

(-

2
%

1-b;

We can identify b; from this equation.
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To compute TZ'S ,we rely on equation (88), derived in Appendix D.6, which we reproduce below:

- ~ o 1=¢; ~2 _b;
1 1 b by APiviToe + oy 1
= 5 1+—f1~,—Z exp | - A 1D — |- (89)
1_Ti 1_7—1' _—;ﬂ;ll—bz 10 2 1—¢;

In the data, we can observe ﬁ-S as the sales-weighted average tax rate in sector ¢. Then, (88) can
be used to identify TZ'S .
Finally, equation (87) makes clear that the proper measure of sectoral returns to scale 7); uses

after-tax sales as weights.

B.4 Additional quantitative results

Figure (16) shows effective sectoral returns to scale 7; for all sectors. In our data, the sector
with lowest returns to scale is “Water transport” with 7; = 0.54, and the sector with the highest
returns to scale is “Retail trade” with 7; = 0.98. The mean and median returns to scale are both

0.83 and 0.82, respectively.

Figure 16: Effective returns to scale 7); across sectors
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Figure 17 decomposes the gap in GDP between our baseline model and the fixed returns-to-scale
economy in its sectoral components. It reports the two terms in (37) that captures a sector’s impor-
tance: 1) its Domar weight w; and 2) the flexibility of its sectoral productivity 3 (1 — 7;) log 1_;%.
We see that the “Water transport” sector is the most flexible one. However, since its Domar weight
is only 0.0021, its importance for the economy is small. High-Domar-weights sectors like “Finance”,
“Real estate”, and “Electricity and gas” that are also flexible are where the endogenous returns to

scale mechanism has the most impact on GDP.

B.5 Sensitivity analysis for Section 7.4

In Section 7.4, we experiment with removing wedges that are correlated with firm productivity.

As we discuss there, removing these wedges leads to higher productivity dispersion. For some
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Figure 17: Domar weights, w;, and productivity gain due to endogenous returns to scale,

5 (1— ;) log 1%%, across sectors
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sectors, removing wedges would imply that ¢; = ;—i > 1, which is not allowed by our model. For
these sectors, we set ¢; = 0.99. In this appendix, we explore how sensitive our results are to this
threshold. Table 4 shows log GDP gains due to removal of sales wedges if we set ©pq: = 0.985,
0.99 (main text), and 0.995. We see that the GDP gains become larger as ¢4, increases. In the
model, having sectors with ¢; — 1 is particularly valuable because they feature a larger mass of
firms with very high productivity draws operating at nearly constant returns to scale, which makes

these sectors especially productive.

Table 4: Log GDP change after removal of sales wedges: Sensitivity analysis

©Ymaz = 0.985 Vmaz = 0.99 Omaz = 0.995
Baseline economy 160% 167% 177%
Dispersed RTS 134% 138% 142%
Fixed RTS 69% 70% 70%

Notes: Increases in log GDP due to removal of sales wedges in the baseline economy, and in the economies with fixed and
dispersed returns to scale, for three values of maximum effective productivity dispersion ¢.

C Proofs

C.1 Sectoral Domar weights

Multiplying the resource constraint for good i, given by (9), by P; we get

M;
PQi=PC+ Y P [ Xy
, 0
J
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From the problem of the household we know that P;C; = 5;PY . It follows that

P,Qi P; /Mi
— prd . — X dl
PY /81 + ; PY 0 ji, L,

where we have divided by nominal GDP PY. Next, from the problem of firm [ in sector j we know

that
P X1 = a;iniuPiQji.

Combining with the previous expression yields

PQ; M P;Qji

or

W = Bl + Z ozjiwjﬁj.
J
Solving this linear system leads to (18).

C.2 Proof of Lemma 1
Lemma 1. The firm’s marginal cost of production Ay is given by

1 N
o= H'fhl 11 Nil
A= Ai(gg) )

where H; := Wl_zé\,:l *ij vazl Pja” is the price of the variable input bundle used by firms in sector
i, and
i = (1 —mu) MiQar (4)

is profits.

Proof. We tackle problem (2) through its cost minimization dual:

N
min WLy + Y PjX, subject to Fy(Li, Xi,mit) > Qi (50)
Nity Lt Xiga =
The Lagrangian is
N . ZN N Nit
, =2 j=1 Qi i
L=WLy+Y PiXyi—Xa | € Ai(na) COma) | Ly == I X500 —@Qals
j=1 j=1
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and the first-order conditions with respect to L; and X;;; are

N
na | 1— Z aij | AaQu = WLy, (51)
Niij i Qu = Pj X (52)

Plugging back into the constraint, we find

1 1-m
Nip = —————H;i (1 —na) Quy) ™t . (53)
(e=it A (mar)) ™t

Using the definition of II; from (4) yields the result.

Note also that the envelope theorem implies that A;; is the marginal production cost of the firm.
Notice that A; is increasing in @;; for n; < 1. As usual, we can the write the profit maximization

problem of the firm as
Qi
max P;Qy —/ Ait () dz,
Qi 0

where the notation makes clear the dependence of A\;; (Q;) on the size of the firm. This problem’s
first-order condition implies that P; = A;; (Qy;), so that the firm sets @ to equalize its marginal
cost to the price of its good. O

C.3 Proof of Lemma 2

Lemma 2. At an interior solution, the firm chooses its returns to scale ny € (0,1) according to

da; (n;)
dni

= log H; — logI1;;, (5)

where a; (n;) = log A; (n:1).

Proof. The first-order condition for 7 in the cost-minimization problem (50) is

N il N Nil
dA; (ny) - Z oy ; d¢ (i) [ 1=, o B
ﬁc(nﬂ) =1 H X5+ A () dm; R | B (54)
=1 i
N Nit
d 1—ZN: (o791 i
+Ai (ni) € (nar) i L, == HXg; —0.
j=1

Note that we do not include Lagrange multipliers for the constraints 0 < n;; < 1 since we focus on
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interior solutions. Dividing by );; yields

il

N
dlog Ai (na) | dlogC(na)  d 1= i i
—1 L, =~ X 1 =0.
dnit - dnit - dny B\ ]:1_11 il
Combining this with (51) and (52) yields (5). O

C.4 Proof of Lemma 3

Lemma 3. At an interior solution, the returns to scale parameter n; satisfies*s

-1 -1
dniy dni d*a; dnit d*a;
= =—|(1—mny) —5 >0 d = 1—mn; <0.
dey;  dlog P (1= mu) dn? ’ a dlog H; (1= mu) dn?
Proof. We can combine (3) with the firm’s optimality condition \; = P; to write
1
log Il = T (log P + €y + a; (nir) — malog H;) - (55)
(2
Together with (5), we can write the first-order condition with respect to n; as
dlog A; (n;
log Hy —log Ps — e = (1 — i) LA 15 4, ) (56)

dn;
K

where we use K as a temporary variable to denote the left-hand side of (56). Full differentiation

yields
| — _ dna dlog A; (1) =) d*log A (i) dni _ dlog A; (nar) dni
dK  dm it A2 dK dng  dK
Simplifying we find
dny 1
- d2log A;(ny) ?
K (L= mna) 571712[(7”)
and the result follows. O

C.5 Proof of Lemma 4

Lemma 4. At an interior solution, the elasticity of output QQ; with respect to productivity e; 1s

given by
dlogQqy 1 1 dny
deg L —mny 1 —mny dey
——

Fized n effect

48When increasing P;, we keep the price of the variable input bundle constant to distinguish the two channels that
affect n;;.

67



In addition, the elasticities of output Q; with respect to prices are given by

dlogQy  ma 1 dnii dlog Qi nil
—_— = + >0, and ———— = — + .
dlog P; 1—ny 1—mn; dlog P dlog H; 1—na 1 —1n; dlog H;
—— ~——
Fized n effect Fized n effect

<0

Furthermore, the impact of a change in e, log P; or log H; on log Q; is amplified because of the

endogenous response of ;.

Proof. Profit maximization implies that the firm’s marginal cost of production A; is equal to the

price P;, and so we can invert (3) and (4) to write

N4l

1 1 O\ 1=
o= El A (n))T—ma | =%
Qzl 1— (6 A; (Thl)) il < > )

or, in log form, as

(log P; — log H;) .

1 1 nil
lo Q-l:—lo 1—ny)+ Eil + a; (M) +
g Qi g (1 —na) — 1_77”2(771) —
Without endogenous returns to scale, it is immediate that
dlogQu _ 1 and  2losQa _ OlogQu _ ma
Ozl L —na dlog P; dlogH;  1—mny

With endogenous returns to scale, we can combine (5) and (55) to find

da; (1)
dng

— (1 —ma) =log P, + &i1 + a; (ny) — log H;.

Combining (57) and (58), we get

da; (ny
log Qi = —log (1 —ma) — Zl(m) — (log P; —log H;) .
il
Differentiating with respect to ¢;, we find
dlogQq _ 1 dny  dai(nq) dna
dey 1 —ny dey dn,  dey

(57)

(59)

Combining with Lemma 3 yields the result. The derivatives with respect to log P; and log H; can

be computed in a similar way. The last part of the result follows from the signs of the derivatives

in Lemma 3.
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C.6 Proof of Proposition 1

Proposition 1. Suppose that Assumption 1 holds. Without endogenous returns to scale, the dis-
tribution of Qg in sector i is log-normal. With endogenous returns to scale, the right tail of the

distribution of Q; behaves like a Pareto distribution with tail index 1/p;, in the sense that

1
log (P (Qut > ¢)) ~ —— log g, as q — oc.

)

Proof. Without endogenous returns to scale, the log of @ is given by (57). The only random term
is €;; and so @y is log-normal. We now turn to the case with endogenous returns to scale. Under

Assumption 1, we can write (58) as

1 - €+ B

T —na 274

9

where we define B; := log P; — log H; as a temporary variable to simplify the notation. Combining

with (59), we can write

log Qi = log <Ei12+ Bi) +7i <M>2 - B;.
i 27

We want to characterize the right tail of Q;;. Because of the logarithm, we need to be careful
about eventual bounds on ¢;;. We impose here that ;; ~ N (ui, U?) is normally distributed with a
truncation such that €;; > —B;. We provide a full treatment of the model with truncated normal
distribution in Appendix D.1. To simplify the notation, we drop the subscripts ¢ and [ from now
on.

Step 1. We want to characterize the Complementary CDF (CCDF) Sg (q) = P(Q > q) as
q — oo. Let us define g : (—B,00) — R as the function that maps € to log Q:

r+ B r+ B\?
—log [ =2 — B.
o) =tox (757 ) 41 (757

One can show that g is a strictly increasing function. It is therefore invertible, and we can write

Sq(q) =P (logQ >logq) =P (g(c) >1logq) =P (¢ > g~ ' (logq)) .

Given the properties of g, the right tail of @ corresponds to the right tail of e.

Step 2. Let y = g(x). We need to characterize the asymptotic behavior of x = g~! (y) as

z+B
2v

y — 0. Letting X = the equation y = g (z) can be rewritten as

y+ B =log X +~vX2
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As y — o0, it must be that X — oo. In this limit, the quadratic term vX? dominates log X and
we can write®

y+ B ~~yX?, asy — oo.

This implies that X ~ /y/~ for large y.
Now, we relate this to x = ¢! (y). Since z = 2yX — B, we have

97 ' (y) =z =29X - B~2\7y.

since the constant B is negligible as y — co. We will come back to this expression momentarily.

Step 3. The CCDF of the truncated normal ¢ is given by

where £ is the untruncated normal with the same mean and variance, and where K7 is a constant.

It is well-known that approximating the Mills ratio implies that

(z — p)°
mexp (—M) , as T — 0o.

We can therefore write

1 (x — p)°

log S- (2) ~ log (Kl) — g tlog <(x_/‘j)\/%) .

As x — oo, the quadratic term dominates the others and thus

2

55 a8 T — 00.
o

Step 4. We now combine the results. Let z, = g~!(logq). From Step 1, S (q) = S: (z,).

From Step 3, for large ¢, and consequently large x,

2
Lq

log S (q) ~ Gy

We can now substitute the asymptotic form for z, from Step 2. Let y =loggq. As ¢ — o0, y = o0

and

zq =g " (logq) ~2y/ylogq.

49 As usual, we write “f (z) ~ g (z) as & — oco” if and only if lima o f () /g (z) = 1.
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It is well-known that if f ~ g then f" ~ ¢g" for r real. Therefore,
acg ~ 4vloggq.
Since ~ is transitive, we can substitute in the expression for log Sg to find
log Sq (q) ~ —i—Zlogq, as g — 0o,
which is the result. O

C.7 Proof of Lemma 5

Lemma 5. The returns to scale n;; of firm I in sector i is given by

_ sz + il i ) (12)
L—ma 1—1 27
Furthermore, the moments of the firm-level returns to scale distribution in sector i are given by

E; = —. V; =—, and Cov;|—, 4| =¢; > 0. 13
' [1—1711} 1 — 7 Ll—mal 2y i) =% (13)

Proof. Given Assumption 1, we can write the returns to scale first-order condition (56) as

2;

log P; —log H; + i = ,
1L —my

Combining that expression with itself when e;; = u; yields

L 1 T hllll
T—mny 1 —m (1) 2v;

and the result follows from combining with (65), derived below, and taking the moments. O

C.8 Proof of Proposition 2

Proposition 2. The marginal cost of sector i is given by

N
A= oWy 117", (15)
Z; (1) Jaiey

where sectoral total factor productivity Z; (;) is defined as

= — 1*’!71‘ 10gl€i. 16
L _%) (1) (16)

Ezxogenous returns to scale Superstar effect Entry cost

2
R . o 1 1 . 1
log Z; (1) = pi + a; (i) + —- + 5 (1 —1;)log (1
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Furthermore, the effective returns to scale 7; is given by

1 —
L=1n;i 2% (1—¢i)

(11; + log P; — log H;) . (17)

Proof. Since firms in a sector all face the same sales price, they have the same marginal cost through
profit maximization. We therefore define the marginal cost \; of a sector ¢ as the marginal cost of
any firm in that sector, such that \; := A;; for any [.

Together with (55), the free-entry condition (8) imposes that

1
) Eil . . 77”
/ ()\ieAl(ml)> o fi (i) deyy = KiW, (60)

il
. H

I

where f; is the probability density function of a normal distribution N (,ui,af). Multiplying the

term inside the parentheses by one, we find

.
b 1] T=ny

/OO oHE

HM (1) i il,,m e“t A; (i) fi (eq) deqy = KiW,
—0 i T 1w
4 Hz‘ 7 /\z’ 7

which can be reorganized as

N M
1 1—n; 1— R .. (o7 ¥1
A== (rW) 0w TT P | (61)
Z; e J
where Zi is defined as
. 1 1=
N3 =i T—mn;

- S )\2 1—n; .
Zi = / <H> et A; (ni) fi(ea) deq

To simplify the notation, define s; := log A\; —log H;. Using the definition of s; and A;, we can write

e P i e 11 1—1n” s
/ e s T T fz (81'[) deg . (62)

—00

Z; =

For an arbitrary set of firm-level returns to scale {n; } this integral cannot be computed analytically,

but we can do so here, given the relationship between ¢;; and n;; implied by the model. Using
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Assumption 1, we can write the returns to scale first-order condition (56) as®

24

log Ai —log Hy+eq = 5 = —2a; (na), (63)
~— — Nit
=
which implies that
1 siteq M Sit+ein— 2
= , and = .
L —mny 27, 1 —mna 2;

Combining with Z;, we find

Z; =

—00

1_ .
00 (sitea)®  s; g
e i 17 fi(ey) dey .

Given the structure of the normal distribution f;, this integral can be computed when 2v; > O'Z-2 and

2 1=
2; (si + i) s
S exp 5y — - .
2v; — o] 2(2fyi—0i) 1—1

We will rewrite this expression using 7);. To do so, notice that we can write

yields

Z; =

7 = J; nuPiQudl L J; (1 = ny) PiQydl 4 J; Wyl (64)
" [ PQudl J, PiQadl ik %Wﬂizdl'
Using the profit expression (55), we can compute these integrals and find
- = 220 = (1= 1) (1= i () (65)
i = 27 S5+ 10 = Pi Ni\i))

where 7; (1;) is the returns to scale chosen by the firm with &;; = p; (computed from (63)). Notice
that (65) implies (17) because s; is given by (63).

Combining (65) with our expression for Z;, we find

1—;
= /1 1—wi . i
7. = (P )
’ [ 1—90ieXp<1—ﬁiaZ(m)+1—?%‘)]

Taking the log yields

~ . 0'.2 1 N
log Z; (i) := i + ai (73) + =5 5 (1 —1);)log (\/1 —<Pi> )

where we have used the definition of ¢; and Assumption 1. The quantity Z; corresponds to the
total factor productivity of sector i if we treat the mass of firms in that sector as an independent

factor. But it will be often convenient to lump that input together with labor. In that case, we can

50In equilibrium, the price charged by firms in sector i must be equal to their marginal costs, so that \; = P;.
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rewrite (61) as

) N i
N N ..
A\ = e 251 i P ’
Y Zi(m) 1:[1 ’
J_
where Z; := Z; (7%;) / nz_ﬁi, which completes the proof. O

C.9 Proof of Proposition 3
Proposition 3. Equilibrium log GDP y :=logY is given by

y() = [w@'z@m + logL. (20)
—_— ——

Aggregate productivity — Labor endowment
Proof. The equilibrium price vector P = (P, ..., Py) satisfies

P

log 31> = —£ () 2 (7). (19)

where z (1) = (log Z1 (1) ,...,log Zn (fn)) is the vector of log sectoral productivities (16). Since

in equilibrium prices must be equal to marginal costs, we can use (15) to write

i_ 1 ﬂ(ﬁ)ﬁiaij
W Zi () 4 \W ‘

Taking the log of this equation leads to
N
P . . P;
log 77 = —log Zi () + s ; ai; log 7.

In vector notation, this becomes log (P/W) = —z (1) + diag(n) alog (P/W). Solving it for
log (P/W) yields (19).

We now turn to the GDP equation. The budget constraint of the household is PY = W L.
Together with the definition of the price index, P = Hf\;1 PZ-/B ¢ =1, we can therefore write

N P -
y=—) Bilogy +loglL,
i=1

and the result follows from combining this expression with (18) and (19). O

C.10 Proof of Proposition 4

Proposition 3. There exists a unique equilibrium, and it is efficient. Furthermore, the equilibrium

vector of effective returns to scale 1) mazximizes GDP y (7)), as given by (20).
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Proof. This proof proceeds in two steps. First, we write down the maximization problem of the

social planner and show that its first-order conditions coincide with the equilibrium conditions.
Since there exists at least one maximizer to the planner’s problem, there is at least one solution to
the planner’s first-order conditions and so at least one efficient equilibrium exists. Second, we show
that the equilibrium conditions imply that there can be at most one equilibrium.

Step 1. The planner maximizes

subject to the goods resource constraint

C—i—ZM/Xﬂ ) fi(e )d5<M/Q Vfi(e)de Vie{l,..,N} (multiplier \;),
7=1

and the labor resource constraint

o

The first-order necessary conditions are as follows:

e) fi(e)de + ZM k; < L (multiplier ).
=1

o B
ac; - N T o
oL Qe
oL ore MY
oL o) .
Xy - Xy T
oL oo
oni(e) = Onile) ’

N
el EYCICR 3 A0 = ik (9)| (e = s
Now, we demonstrate that the competitive equilibrium allocation satisfies the planner’s optimality
conditions. To do this, we identify the planner’s shadow prices with the equilibrium market prices.
Set u = W. Consequently, the planner’s shadow price for good ¢, A;, corresponds to the market
price P;. The first condition corresponds to the household’s optimality condition (Section 2.4). The
second and third optimality conditions correspond to the standard firm equilibrium optimality con-
ditions (51) and (52

condition (54). Finally, the last optimality condition of the planner coincide with the free entry con-

). The planner’s fourth optimality condition coincides with the firm equilibrium

dition (8). Since the resource constraints are the same in the planner’s problem and the equilibrium
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definition, we have shown that the planner’s first-order conditions coincides with the equilibrium
conditions. Since the planner’s constraint set is closed and bounded, and that the objective function
is continuous, the Extreme Value Theorem implies that there exists a maximizer to the planner’s
problem. This maximizer must satisfy the first-order necessary conditions. Therefore, there exists
an equilibrium and that equilibrium is efficient.

Step 2. We now show that there can be at most one equilibrium. The equilibrium of the model

boils down to equations (17) and (19). Indeed, if we let p := log (P/W') we can write these equations

as
p=—L(N)z(n), (66)
where
() = o (i) + 41 os () — (1 - e (67
Z2i\1N) = K+ i \1i) T - — ) U= Ki,
21— 1=
and
1 1 N
— = pi +pi— ) ciipj | - 68
L—7 2% (1 — i) 2_ st (68)

j=1
There is a unique equilibrium if there are unique vectors 7 and p that solve these equations. We
can combine these equations into a single one. Let us introduce the variable v := (I — ) p and a

constant C; = 27; (1 — ¢;) > 0. We can then rewrite (68) as

. Ci
l—fj=——&n=1- :
Hi =+ Hi =+ 0
We are interested in equilibrium of the firm 0 < 7); < 1 for all 4.>! This implies that we can restrict
the relevant domain of v to be

wi +v; > C;.
Using that notation, we can simplify the equation (67) for z; as

L. C.
Zi:ul2 Z—}—MZ_'_ZvllOg(Kl/Hl),

where K; := 1/4/T — ¢;. Next, we can premultiply (66) by £ (7)~' = (I — diag (7)) a) to find
(I —diag (M) a)(I —a) v=—z

or

<I+ diag(1—n)a (I — a)71> v=—z.

511t is straightforward to write sufficient conditions on the parameters so that the equilibrium is of that form. In
particular, large p lead to higher equilibrium 7.
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Substituting the expression for z and 1 — 7, we find

Fi(v) := % (i +v3)” + Ci ((a (I—a) U)Z, + log (Ki//‘éz‘)> =0.

There is a unique equilibrium if there is a unique solution v to the equation F'(v) = 0. Recall that
p=(—a) ' v. Then

Fi(p) = Fi(v(p) = % (1 + ((I = @) p),)* + Ci ((ap); + log (Ki/ki)) .

The Jacobian of F is
My (p) = (pi + (I — @) p);) (I — @)y + Ciavig.

In matrix form,

M (p) = diag (1 + v (p)) (I — a) + diag (C) a.

The diagonal elements of M are
M = (pi +vi) (1 — i) + Ciavyy > 0,
which is positive given our domain restriction that u; + v; > C;. For off-diagonal terms ¢ # k,
My, = — (pi +vi) g + Ciovig, = ag, (Ci — (s + i) <0,

such that M is a Z-matrix. Further notice that
> M| = (i + 1) = Ci) Y i
ki k#i
For M to be strictly diagonally dominant, it must be that
(i + i) (1= @ii) + Cicvig > (i +vi) = Ci) Y v,
ki

which we can reorganize as

>k Qik
L= % ik

This condition is true since C; > 0 and p; +v; > C;. Therefore, M is diagonally dominant. It follows

wi +v; > —C;

that M (p) is a non-singular M-matrix for every p. Since nonsingular M-matrices are a subset of
P-matrices, M (p) is also a P-matrix for every p. By the Gale and Nikaido (1965) theorem, F'(p)
is therefore injective and can have at most one solution F (p) = 0. There is therefore a unique p
that solves our original system of equations. From the vector p, it is straightforward to recover all

other equilibrium quantities in a unique fashion. There is therefore a unique equilibrium and it is
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efficient. O

C.11 Proof of Lemma 6

Corollary ??. An increase in average productivity ji; increases returns to scale in all other sectors,

such that
dﬁz‘ 1
— =V > 0. 22
dﬂj ) J ( )

Furthermore, the impact of productivity dispersion 032- on 1; s given by

dﬁz 1 8Zj . . 82%-
=V KL —1(i= , 23
dajz v ( J 80?- (0 =17) 801-28171- (23)
where
8Zj 1 1- ﬁj 0 <(‘)zl> 1 1
= — + >0, and — | = | = - .
002 2(1—1ny) 4y (1—y) 202\ ) 201 —m)*  Avi(l—w)

In particular, dﬁi/dajz >0 fori#j.

Proof. This proof proceeds as follows. First we derive the first-order conditions of the social planner.

Second, we write down the derivative of the first-order conditions with respect to 7;. Third, we use

this expression together with the implicit function theorem to derive the impact of 1; and 0]2- on 7;.
First step. Let us first compute the first-order conditions of the planner’s problem. Differen-

tiating (20) with respect to 7; and setting that expression to zero implies that

dL T dz (1)

BT )+ ke ()]

- — =0.
dn); dn);

Computing the derivative of z (77), we find

Qg AZ' 0'1-2 . .
<dz(77)) _ ddf{f)+7(1_1m)2+%log(1—soi)+1ogm if j =i
i /o if A

Next, the derivative of the Leontief inverse yields

de  d(1—diag (n)a)™* 4
i, i, (1 — diag (1) )

=[] o] £ =L L

d (1 —diag () a)

i, (1 —diag (7)) a)~".
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Putting the pieces together, we have

da; (1; 21 1
s () 0] £ ()2 1) + s () | “0 4 % +Slog (1 1) +logi| = 0.

(1—m)? 2
Since Domar weights are positive, we can write that condition as

da; (1) | 1
Frmalc@e+ 2 oL Loy vlgri—0,  (69)

i 2 (1—m;)" 2

where we have defined F;.

Second step. The implicit function theorem states that
dy __[0F)7NOF
dp on op |’

First, let us compute the Jacobian matrix 0F /97. Consider an off-diagonal element k # i

8.E 8 ( T " . T (3£> T < 825 >

—=— (o, L(N) 2 ):ai — |z+o;, L| =

On, O, ()= @) on, O,

82k
oy,

= o L1;1] oLz + o) L1,

Factoring this expression gives

afz < T |: T 8Zk;:|
— = |y E.k> a,Lz+—| =0,
O, ‘ g Oy,

where the last equality follows since the term in bracket is the first-order condition of the planner.

For a diagonal element,
OF; 0 T 0z
= L .
7= o (15 )

Through the logic above, the first term is 0, so we need only focus on the second part

8]-“2- 0 821» d2ai Ui2 d2a,~
= oo = g T —3 = (1 - i) —
8771 8771 3?7z dm‘ (1 - "71') dni

(70)

Third step. Next, we can compute the element (7, j) of the matrix %—ﬁ, which is gfj. The FOC
for sector i is F; = aiT Lz + g—fi. The parameter p; only enters through the vector z, specifically

through its j-th element. Therefore,

Thus,
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which is simply the (i, j)-th element of the matrix a.L. Putting the pieces together,

di oF\ ™! (aL);; Pai\ ™
= () @o=g = (0w ) e

&2a; 07
a2 T =)

Fourth step. We now turn to the impact of (TJQ». We use the implicit function theorem once

more. Note that

OF g 0e 0 (0%
80? S 8(7?- 80]2 on; )

The vector dz/ 8%2- is zero everywhere except for it j-th element

0z 0 UJQ' 1 —17; 1 1 —17;
= — — log(1—¢;) | = — + > 0.
807 = 957 <2<1 Sh) T 2 B S T )

Similarly, 25 92 ) is zero whenever i # j. We can compute
do on J
j 1

3(%) “ 5 GJZ +110g(1—<p~) = L !
00f \0; ) doj \2(1—#;)* 2 )20 —q)? 4 (-ey)
Putting the pieces together, we find the result. O

C.12 Proof of Proposition 5

Proposition 5. The difference in log GDP between the baseline model and the fixed returns-to-scale

economy s given by

> > 0.26
— Pi
Proof. We first compute GDP in the fixed returns-to-scale economy (denoted by <), in which all

firms in sector ¢ have the same returns to scale 7;; = 7;. The free-entry condition is E [f[zl} =r;W.

Using the expression for profit (55), this condition becomes

*° 1 ~ . ) -
/ exp (1 - (logpz' + €ir + a; (1)) — 7 log Hz)) [ (ea) deq = wiW.
—o0 — i

Solving the integral and following the same aggregation steps as in the baseline model (Proposition

2), but without the endogenous choice of returns to scale, this condition yields a sectoral productivity

of

o2

Zi = i +a; (i) + Y = P (1 — i) log k;.
Because 7);; is fixed, the term related to the choice of scale and the resulting amplified selection (i.e.,

the fourthterm on the right-hand side of (16)) is absent. Since the sectoral production function
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and cost shares are still governed by 7);, the pricing equation is analogous to the baseline model:
log (p/W> = —L(n) 2. Log GDP is therefore given by:

j=w®)" 2 () +log L.

Note that the Domar weights w (77) are identical to the baseline model because the sectoral input
shares are the same in both economies.

Recall from 16 and 20 that in the baseline model

y=1lw®)]" 2 () +logL,

where 9
o 1 1 . 1 R
o=t as )+ G (= i og () = (1= ) o
As a result,
y—g=wml" (=) —2(®). (71)

The difference in the sectoral productivity vectors, z — Z, is a vector where the i-th element is

Substituting in (71) yields (26). The inequality y — ¢ > 0 holds since 0 < ¢; < 1 for all 1. O

C.13 Proof of Proposition 7
Proposition 7. The response of log GDP y to a shock Au; is given by

Ay = wihyi; + 23“’@ (Am)? + o ((Am)?). (30)

Furthermore, the second-order term is non-negative,

dw; N d
Lo (=Y Krwr=2 ) >0
dp; ( ; kadMi> -

Proof. The second-order expansion of y with respect to productivity shocks is

N
Zd—y Zd i/ AMZA,uj—i—o(AQ,u).

By Proposition 6, dy/dp; = w; which yields (30) when Ap; = 0 for all j # i. Next, Corollary 7
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implies that

dw; N i
i ) >
i ;mek iy = 0,

where the inequality follows since dfjidu; > 0 from Corollary 6. O

C.14 Proof of Lemma 8

Lemma 8. An increase in the wedge TZ-S decreases the returns to scale in all downstream sectors,
such that

dn); 1 ~1
=— UG <0. 32
dTJS 1— 7_]5 i i > (32)
Proof. See proof of Proposition 10 in Appendix D.5. O

C.15 Proof of Proposition 8

Proposition 8. In the presence of sales wedges, the impact of a parameter x € {uj,0j,k5,7;} on
GDP is given by

N oy di

o dx’

dy 0Oy
dy ox

=1

6910where Oy /dx is given by Proposition 6, di;/0x is given by Corollaries 6 to 10, and dy/dn; > 0.

Proof. See proof of Proposition 12 in Appendix D.5. O

C.16 Proof of Corollary 1
Corollary 1. The growth of effective returns to scale 1) is given by

dn o1
— =V""Kg, > 0. 34
dt gﬂ ( )
Furthermore, as t — oo, effective returns to scale ) converges to 1.

Proof. The first equation follows directly from (22). Note that the right-hand side is strictly positive
for 0 < 77 < 1 and converges to 0 as 7 — 1. The second result follows. O

C.17 Proof of Proposition 9

Proposition 9. The growth rate of GDP is given by

d 1
W_ I 1= >0, (35)

dt  1—a
\/1+;1;a (25t +7)
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where

l-a,

T:=- a’ (flo) — 2a () > 0,

(07

and where T is the effective returns to scale att = 0.

Proof. The envelope theorem implies that

dy

2 =1 -ia)" g (72

Therefore, to characterize %, we need to solve for 7 (t). Equation (34) can be written as

dy 1 a(l—%)°
dt  2y—02 1—ha In

and reorganized as

ag _ l—«o « .
(W‘%th_ (<1 —F T —ﬁ)2> o

Integrating on both sides yields

agy 11—« «
——t+ K= + ~ (73)
(v-%)2 2(1—9)* 1-1

where K is a constant that can be pinned down using an initial condition. Suppose that at ¢ = 0,
the equilibrium is such that / = 7. Then,
l-« «

K= + — > 0.
2(1—1)*>  (1—1p)

Equation provides the evolution of 7 over time. Since v > ¢2/2 by assumption, it shows that 7 — 1
as t — oo.
Combining with (73) with 72 yields (35). O

C.18 Proof of Corollary 2

Corollary 2. For anyt > 0, GDP grows faster in the economy with endogenous returns to scale.
In the limit as t — oo, the long-run growth rates satisfy

dy 1 1 C o d

lim — = > = lim —,
thodt  1-—alt T 1= ﬁoagﬂ e

where § is log GDP in the fized returns-to-scale economy, and where 7y is the effective returns to

scale vector in the baseline economy at t = 0.
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Proof. In the economy with exogenous returns to scale, (20) implies that % = 1_}”]0 gu- In the

economy with endogenous returns to scale, the envelope theorem implies at, at any point in time

we have % = #n(t) gp- This implies that the two economies have the same growth rate at ¢ = 0
since 7 (t) = np by definition. But since dn/dt > 0 by Corollary 1, the growth rate of the economy
with endogenous returns to scale is larger for any ¢t > 0. The second part of the result follows from

taking the limit ¢ — oo in (35). O

D Robustness, extensions, and additional analysis

In this appendix, we provide additional analysis of the benchmark model presented in the main

text. We also show that that model can be extended in different ways.

D.1 Truncated normal shocks

In the baseline model, we assume that productivity shocks e;; follow a normal distribution. While
this allows for a tractable analytical solution, it theoretically permits firms to draw arbitrarily low
productivity shocks, which could imply returns to scale n; ¢ (0,1). In this appendix, we solve
the model assuming that productivity follows a Truncated Normal distribution. We show that
the equilibrium conditions converge to those of the baseline model as the truncation point goes to
negative infinity.

Specifically, productivity shocks of firms in industry 4 follow truncated normal distribution with

support [g;,00). We assume that g; is sufficiently high such that
g > 271 — Si,

where s; is given in (63). Under this restriction, all firms choose 7; € (0,1), as is evident from (63).

The analogue of the free-entry condition, given by (8) in the main text, is

o €2 — 52  s24eysi (s-l—u')Q 1 %%
exp (—s; ex (L R - Z}ex - . de;; = Ki—.
P (—si) /8 p{ ; 2 p 202 — (Q%) it = hiy-

Simplifying this expression, we get

W W2, i Hj\le pj%‘ 1 1 (si+ ) - 5
TKZ_ iy 11— ‘exp 542 (1 — o 17, ( )
2 1 Pi ’71( C,DZ)
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2
o°

where, as above, ¢; = 7272-7 and
1

Pi

1= (L (- m)

Tu:l—@(@(&—m—lff (s +51)))

In the baseline model, ¢; = —o0, and T7; = 1.

Next, following the same steps as in Appendix C.8, we can compute 7;:

A:le_ 1—oi o (i) (A —mi ()
" [ PiQydl % + (1 —¢i) Tn 1+ (1= i) (1= mi (i) T’

where

2
A i
55, 5= €XD (—% ( - (Q— i — 125 (i +s7;))) >

1= @ (Y02 (e = 125 (it 1))

21 =

Clearly, if e; = —o0, then Ty; = 0, and we are back to the baseline model (see Equation (65)).
Finally, we can derive the analogue of (19). Following the same steps as in Appendix C.8, we

get

log - = — (I — [dias (¢) (I — ding (¢)) diag (1 (1))] ) " x

a0 () (1~ diag () (1~ o (1) (o (1~ ) + o~ ow T )|

Again, if ¢; = —o0, we are back to the baseline model.

Clearly, if firms with €;; = p; choose n; € (0, 1), ; can be chosen such that e; < ;. Furthermore,
if o; is sufficiently small, T}; is arbitrarily close to one and Tb; is arbitrarily close to zero. In that
case, the mass of firms choosing 7; ¢ (0,1) in our baseline model is negligible, and the baseline
economy is almost equivalent to the model with truncated normal shocks.

D.2 The impact of v and x on returns to scale

In this appendix, we characterize how entry costs x and the cost of scalability v affect returns
to scale.

D.3 Entry cost

We examine the impact of entry costs on returns to scale decisions.

Lemma 9. The impact of the entry cost k; on the effective returns to scale 1); is given by

dﬁi -1 .
= U i (1 —F:) = Tsiein| .
leg Kfj 7 [ ]CZJ ( 77]) {l—]}] (75)
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In particular, di;/dlogk; <0 fori# j.

Proof. Applying the implicit function theorem to (69), we get

di __[afr OF

dlog k; n | dlogrk;

We have already computed the first term in the proof of Lemma 6, so consider the second one. We

have 5 0: (i) ;
Fi T 0207 log k; T K o
Olog K a; £(7) Ologr;  Ologk; a; L(0)1;( nj) + 1 (i =j)

Putting the pieces together we find the result. .

An increase in the entry cost in sector j always reduces the effective returns to scale of any
other sector ¢ # j. The mechanism is similar to that of a shock to u;. Increasing x; decreases j’s
productivity z;, which increases the price of the input bundle of any sector that relies on j. Firms
in those sectors then reduce their returns to scale to rely less on expensive intermediate inputs. At
the same time, the effective returns to scale 7); of sector j itself typically increases with x;. This
is because, when entry costs are large, there is more pressure to have fewer but larger firms, which

requires large 7);.
D.4 Cost of adjusting returns to scale

The productivity cost 7; of adjusting returns to scale also affects firms’ scalability decisions.

Lemma 10. The impact of the productivity cost of higher returns to scale y; on the effective returns

to scale 1; is given by

dn; -1 0z; 0%z
— U JCoi 22l Ty — 76
0 Moy TheEn g 70
0z; 1 1 j - 8%z _ 1 1 i ; A
where % = —fm—ﬁ% (1 —=17;) <0 and 576 = — it 1f%. In particular, di;/dvy; <

Proof. Applying the implicit function theorem to (69), we get

dan _ [af} - {&T
dy; on il

We have already computed the first term in the proof of Lemma 6, so consider the second one. We

have
8}}- T ~ 8;: (77) 82% (77@) 1 8
=a; L + — + ——log (1 — ;).
97; W Oy Oydii 207 51 =)
iz OF 0
i g 9%
8’}/j ’ K a’y]‘,
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where

aZj 1 1 ©j
i N S (1 —1) <0,
dv; L=mn; 29 1—g, !
For ¢ = j, we have an extra term,
OF, _ _ 0u) 11
i Tov (- 2ul-g

O

Consider first the impact of a higher 7, on the effective returns to scale of another sector ¢ # j.
Unsurprisingly, a higher productivity cost of adjusting returns to scale leads to a lower productivity
in sector j. Through input-output linkages, that lower productivity increases the price of the
intermediate input bundles of firms that rely, directly or indirectly, on j as an input (L£;; > 0).
Those firms, to limit the negative impact of higher inputs, lower their returns to scale. A similar
impact is at work when considering the impact of a higher «; on j itself, but in addition, j is also
affected more directly by the increase in ;. Indeed, a larger v; mechanically makes a high 7); more
expensive, which amplifies the negative movement in 7);. In general, these forces combine to create

a stronger negative impact of v; on 7);.

D.5 Wedges

In this appendix, we consider an economy with wedges. In the presence of wedges, the firm’s

problem (2) becomes

N
I = e (1 =77) PiF; (Lig, Xqoma) — (L + 7F) WLy — Z (L+75) PiXiju.  (77)
il il Al .
7j=1
Firms in sector i have to pay <1 —i—Té-() P; for each unit of good j, Tz-)j( > —1, and (1 + TiL) w
for each unit of labor, TZL > —1. Firms face an effective sales tax TiS < 1. Finally, we introduce

a corporate tax rate 7;l. This tax does not directly affect the profit-maximization problem (77).

However, it affects the free-entry condition (8):
E; [(1— ) 0 (ea, P, WH)] = kW™

As we can see, the profit tax effectively increases the entry cost.
Wedges {TX, L s, TH} can capture a variety of economic factors, such as tariffs, transportation
costs, taxes, markups, etc. Some of those wedges can be associated with loss of resources, while

others only lead to resource redistribution. To capture this, we assume that a fraction of wedge

87



income is rebated to the household, such that its budget constraint (7) becomes

N
> PC <WL+T,

=1

where

N
T = 295 SPQlJrZQL Lwr, +ZZ@X T PiXij+ Y 0 L.

i=1 j=1 =1

Here 67,60F,6X 011 € [0,1]. Note that wedges {TX,TL,TS,TH} can be both positive or negative.

AR YRR

For example, 77X is positive in case of transportation costs. If those are iceberg costs, nothing is

X
rebated to the lflousehold, and 9;}]{» = 0. Tariffs would also correspond to a positive Tff Different
from transportation costs, tariff income is likely partially rebated to the household, in which case
H-X is positive. On the other hand, TX would be negative in case of government subsidies. Such
subsidies are financed by lump-sum taxation of the household, such that 0X =1.52

The model can be analyzed analogously to our baseline model. In particular, we can derive that

the equilibrium price vector is given by

log - = —£ (1) 2 () (75)

where, as in the baseline model, 7 is a vector of sales-weighted average returns to scale, £ (1) =

(I — diag () )", and

1 i
—(1—m)1 . 79
) L F e T
The productivity shifter T; is

7(1-5; 045) 17N hicxis
(1472 ’aj)l_[jzl(hrrg)

S
11—

Ty =1T; (tf, 77,75 ;) = log (80)

Introducing wedges {TX 78 7S } is, therefore, equivalent to a change in sectoral total factor pro-
ductivities. An increase in wedges TZ»L, TS or T ;; reduces the effective productivity of sector i,
resulting in a reduction in the returns to scale in all sectors. This result is analogous to the effect
of a reduction in pu;, described in Corollary 6. At the same time, an increase in the corporate tax
TiH effectively increases the entry cost, and so its impact on returns to scale is analogous to that of

log x;, described in Corollary 9.

Proposition 10. An increase in wedges {TX,TL,TS} reduces returns to scale in all sectors. An

52Deadweight losses of subsidies can be captured by setting 95 > 1.
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increase in the profit tax TiH reduces returns to scale in other sectors but can increase returns to

scale in sector .53

The market-clearing conditions (9) also change. Specifically, for good 4, the resource constraint

becomes

N
Q-1 =0)r ) Qi=Ci+ D (1+(1-06%) 7)) Xz
j=1
Then the Domar weight of sector 7 is

(D‘_PiQi
‘" PY

=1 (1 —diag [(1 - 6%) o 7°] — &' diag (ﬁ)>_1 8,

where o denotes element-wise product of two vectors, and

X X
s J 1+7¥
Jt

< ajys.
Using these results, we can derive how wedges affect the expression for the aggregate output.
Proposition 11. Fquilibrium log GDP y :=logY is given by

y(m= B L@H=z@H) + logL - logl'; (81)
—— S~~~ S~——

Contribution of productivity — Labor endowment  Wedges income

where
—
al s al agJ{Ti)j( al o0f 7} S S | oI I s
1— wi | (L—77) 0 Qi + 11— i Lt + 0717 4+ 60,17 (L—77)(1—n;

As discussed above, some wedges can lead to a destruction of resources while others may lead
to redistribution of resources. In the latter case, aggregate output needs to be adjusted for wedges
income. This is the last term in expression (81). Naturally, if 95]{ =0 =07 =01 =0 for all 4
and j, then nothing is rebated to the household, and logI'; = 0. If all the wedges are nonnegative,
and some of the wedge income is rebated back to the household, then logl'; < 0, which leads to a
higher y.%*

The presence of wedges distorts the economy. Intuitively, firms do not internalize that part of
the wedge income is rebated to the household, and their decisions are inefficient as a result. If none

of the wedge income is rebated to the household, then logI'; = 0, and the economy is efficient. In

53We provide expressions for derivatives of returns to scale with respect to wedges in the proof of this proposition.
540f course, in that case, sectoral productivities (79) are also lower than in the no-wedges economy.
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that case, firms correctly perceive wedges as resource-destructive. In the inefficient economy, the
equilibrium returns to scale do not maximize GDP, and any marginal change in returns to scale can
have a nontrivial impact on GDP. Specifically, a change in the underlying parameter x leads to the

following response of GDP:

N .
dy oy N oy diy
dx  Ox = 9i; dx
In general, the sign of the response of GDP to a marginal change in returns to scale, g é’] , depends

on the sign of wedges. However, we can provide a sharp characterization in a few important special

cases.

Proposition 12. Suppose that there are no profit taxes, TiH =0, and all other wedges are positive,
7'2-‘}( > 0, TZ-L > 0, and TZ-S > 0 for all i,7, and suppose that some of the wedge income is rebated to
the household, log'; < 0. Then any marginal increase in the returns to scale leads to an increase

. dy
in GDP, i 0.

Consider first the case with no profit taxes. If other wedges are positive, the equilibrium returns
to scale are too low (Proposition 10) as the firms do not internalize that part of the wedge income is
rebated to the household. Then, any change in the parameter that leads to an increase in returns to
scale is beneficial for GDP. For example, if the economy becomes more productive, as captured by
a higher (15, the equilibrium returns to scale increase (Corollary 6).>> Such a change has a positive
impact on GDP because the equilibrium returns to scale were inefficiently low before the change.

Profit taxes affect the equilibrium returns to scale differently. As Proposition 10 suggests, an
increase in the profit tax TZ»H is equivalent, from the firms’ perspective, to an in increase in the
entry cost ;. Such an increase typically leads to a higher 7; (see our discussion following Corollary
9). Therefore, if profit taxes are rebated to the household, equilibrium returns to scale tend to be
inefficiently high as firms incorrectly perceive entry costs as being too high. In that case, any change
in the parameter that leads to a further increase in returns to scale is harmful for GDP. Expression

(86) in the proof of Proposition 12 provides an exact expression for g gj in that case.

D.5.1 Proof of Proposition 10

L,TS} reduces returns to scale in all sectors. An

Proposition 10. An increase in wedges {TX,T
increase in the profit tax TZ-H reduces returns to scale in other sectors but can increase returns to

scale in sector i.

Proof. Taking first-order conditions of (77) with respect to L; and Xj;;, we can derive the following

SIf x € {Mj, ajz-, Kj, ’yj} , it is straightforward to show that g—;’( and Zixj are given by the same expressions as in the
baseline model.
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expression for log profit of firm [ in sector i:

a; (Mi) + M <10g % - ijzl a;jlog WJ)

logIT;; = log P; + log (1 — Tis) +

1 —na
1+7F =S50 o N (147X)%
€il — Mil <log (o) (1_7_15_[)”_1( i)
+
L —nq
Then the first-order condition with respect to n; yields
dlogII;
dniy
1-N iy N i
g | L) T (1+73) Tlog 2 f: log 12+ a (na) + (1 — )
el — log og = — > aijlog == +a; (ni — i) 5—
' (1—7°) w = voEw s 7 dna

Following the same steps as in the proof of Proposition 2, we can derive that the the equilibrium

price vector is given by (78), and the sales-weighted average of firm-level returns to scale 7; satisfies
1 1 _ . £ — 7

_ Pi il — Mi (83)

= —~ —|— R
1—my 1—1 2

L)1 s v )i
where 1; = p; — log (+n) = (1721)1_1(1+T”) . Plugging (78) and (83) into (82), we get the

following equation for 7:

dal(ﬁl) O‘-2 1 T R R 1 Ki
= i - . “log (1 — ;) +1 4
Fi== 5 (1_ﬁi)2+az£(77)2(77)+2 og (1 —¢i) + 08T (84)
NI o al X\ ij
—log |(1+77) = [Ta+=)" | =o.
j=1

Denote by y; any of Ti)j( , TZ-L or Tf . Then, by the implicit function theorem,

52 [)

dxi  Lon X

As in the baseline model, we have
8]-',, - ( ) dQCL,
on; 7 ih
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OF; _ (A :r s .
onr = 0 if ¢ # j. Furthermore,

and

1= aij 7N ig
92 (i) 0log [(1 + TZL) szl (1 + 7'5) }

OXk OXk

From (79), it is clear that g—;’z < 0. Therefore, j—)?i < 0. In particular, we have

. . -1
dT]i 1 dm 1 |: dzai
== = - (1—i) 5 Kij.
deS 1-— T]S dlog (1 _ Tf) 1-— TJS dn?
O
D.5.2 Proof of Proposition 11
Proposition 11. Equilibrium log GDP y :=logY is given by
y(@) = g L@=m + logL - logl;
N—— ~—— ——
Contribution of productivity — Labor endowment  Wedges income
where
I, =
al s Y 05 al of 7} S_S | oll_T0 s
i—1 j=1 Tij = i
Proof. From the household’s budget constraint, we have
Y=WL+T, (85)
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N [N
T= (D 657y PiXij +0FrF WL + 0575 Qi +
i=1 \j=1
QX X
:Z anam iy (1_7—)PQ1+772
=1 l]

II, 1T

GLL

N
1—) oy (1—T)PQZ

STZSBQZ' + QPTZ-H (1 - Tis) (1 —1) Ple))

N awﬁ ’7'

Z 1_T ﬁ Z 1—1—7'2»]»

=1 j=1

Plugging this into (85) gives the result.

D.5.3 Proof of Proposition

Proposition 10. Suppose that there are no corporate taxes, T;

positive, 7'

N
(1=, o) 0F 7
-

S_S HH
142 + 0777 + 0T, (1—7’)(1—771)

= 0, and all other wedges are

> 0, T > 0, and 7' > 0 for all i,7, and suppose that some of the wedge income is

rebated to the household, log's < 0. Then any marginal increase in the returns to scale leads to an

increase in GDP, g—}]’_ > 0.
J

Proof. Differentiating y, given by (81

), with respect to 7); (noting that the Envelope Theorem

eliminates the productivity terms at the firm’s optimum), we get

Jy

om

where the numerator is

N 9X X
Num; = wZ 1 — 7' Qi Y WX
N ~ X
day, Tk
2 g | 0=) Z oy 2
k=1 1+7 kj

Ologl';  Numy

o I,

N L_L
0+

1—5 Q4 11 ZL HlHTZ-H
= +7;

N
OiTic 5_S | pll
7j=1

The derivative of the Domar weights is given by

diop
dn);

J=1

Therefore, if taxes are positive (7%, 7% 79 > 0) but there is no profit tax (7!

N
- Zdij (I - diag [(1 — 6%) o 75] — diag (7)) d)j_,: @; > 0.

= 0), all terms in the

numerator are positive (assuming some rebates 6 > 0), implying ay > 0. O
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In contrast, if 7% =71 =79 =0 and 77 > 0 with ' = 1, then & = w, and we get

N N ~
Ay —m 4 Y (Zj:l Oéijﬁjk) 7 (1 — )
= = w; - .
on; 1= wit (1= i)

(86)

As 7 — 1 for all k, the term (1 — 7)) vanishes, leaving only the negative term 7(.«)1"7'2-1_1. Thus, gTy

becomes negative.

D.6 Sales wedge correlated with productivity

In this appendix, we consider an economy in which firms face sales tax (38). The firm’s problem

(2) becomes
N

I = pmax (1—7) PiF; (L, X, ma) — WLy — ZPinj,b
il il N5l -
J=1

where F; (L;;, Xy, mq) is given by (1). Clearly, this problem is equivalent to the one in the main text

if we redefine the productivity as
Eu=cy+log(L—77) = (1—b;) (e — pi) + pi +log (1 — 7°),
such that &; ~ iid N (fi;, 67), where
i = Wi + log (1 — TiS) and 6; = (1 — b;) 0.

Similar to the baseline model, define

with @ := (1 — 75) wy and @; := (1 — ?is) w;, where

s_ [Mwa g
S ZLr2dl. 88
W [y (59
As in the baseline model, we get

I pi+s

L—7 2% (1= @)
where s; = log P; — log H;. Integrating (88), we get

~ ~ 1= ~2 b;
1 1 b b, ApiviT—ar 05T 1
— = 14 fz : eXp | — - MALRE LInh = . (89)
1—45 1—-+5 7117%;]?1—@ 1-0; 2 (1—&)
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Then, following the same steps as in the main model, we can derive

logW = 8" (I - diag (i) a) ™" 2 (i) ,

where 9
- Y 1
Zi (11;) —ui—l—a,(nz)#—?’l_n —l—(l—m)log(l_@') — (1 —1;)log k;
(2 (2
~ 52
and @; = 70

We assume that all tax proceeds are rebated to the household. Therefore, using the market

clearing condition (9), we get

o PiQi
Py

= B" (I — diag (1 — ) diag (1) @) 1.

The rebate amount is
N M; N -
T=>) / T PQudl =Y 7w PY.
i=170 i=1
GDP is then

N
C=WL+T & logC =logW + log L — log (1—2%{9%-) .
i=1

D.7 Dispersed returns-to-scale economy

In this appendix, we consider the dispersed returns-to-scale economy. Specifically, consider the
initial economy (we will use subscripts b to mark any quantities in that economy). From (10), firm

[ in sector i chooses the following returns to scale:

1 1 b b
= (&b + ) , 90
1_ 775[ 2,)/1 (Ezl S ( )

where s? = log P? — log H? in the initial economy. Furthermore, from (17), we know that
1 g K3 g K3 y

1 1 ( b b
= st (1)
L=y 2y (l—¢p) V0

_ (o)

where gpf =5

Suppose now that there is a change in the distribution of 5%, such that the mean changes from

u? to w;, and the standard deviation changes from O'i? to ;. Such a change can reflect an increase
in u for all sectors (Section 7.3) or removal of sales tax (Section 7.4). Then, productivity £ shifts

to g;;, where

b b
€ — My _ &l — M
O',E) ag;
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In the dispersed economy, firms can adjust all their choices except returns to scale. The free-entry

condition (8)

00 e —a: (n? 4 b
/ exp  log P, + - ’(”“)b W2 () deg = maW,
—00 L=y

=T (ei1m}y)

where s; = log P; — log H;, and 77?1 is given by (90). Taking this integral, we get

. 2 2
[(Nf‘i‘sf) (1—<P?%) + ¢? (MH‘Si)} 111(;0-1)_ (M?‘FS?)
k3 _@i OTZ?_
exp 3 - X (92)
2(7)
N
P; 1
exp Z ajjlog Wj = K.
=1 \/1—¢§ (2% -1)

L . M; w, . L
Next, we can define 7); in the same way as usual, 7; = fo : %nibldl , Where again 77?[ is given by
3

(90). Omitting tedious yet straightforward calculations, we get

1 1 o;
= [(u? + sé’) + b <m + 5 — (ui? + s?) bﬂ : (93)
—0 oy, (1 _p (2% 1)) o

Combining (91), (92), and (93), we get

log W = 8" (I — diag (7) )" 2,

where
_ (90 _ 2
o L= (205’ 1) Ll (1_¢bm>+(1 ﬁ,)<1—90§’> i
1 — M ~ ~ 3 ) ~ N
L - 1—q? ‘o! 1—7p !

1 i
— (1 — 1) [log <1 — ! <20b - 1>> +log/-i] .
2 o;

GDP is then Y = W L.
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