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Abstract

An extensive literature has documented the negative effect of global warming on ag-
gregate productivity, but we know little about the micro origins of this relationship. This
paper identifies and quantifies a novel channel—the impact of extreme temperature on capital
misallocation—as a key driver of aggregate climate damage. Using global firm-level micro-
data from 32 countries, we provide causal evidence that a day with extreme heat (>30°C)
increases the dispersion of marginal revenue products of capital (MRPK) across firms by
0.31 log points, implying a 0.11% annual aggregate TFP loss for an average region-sector.
This effect is more pronounced in hotter and more economically developed regions. Tak-
ing future adaptation and development into account, our estimates suggest a global aggre-
gate TFP loss of 36.73% from the misallocation channel by the end of the century under the
SSP3-4.5 scenario, relative to 2019. To explain the mechanisms, we develop a firm dynamics
model featuring heterogeneous temperature sensitivities both within and across firms. The
model predicts that inaccurate temperature forecasts and heightened productivity volatil-
ity in extreme climates jointly exacerbate capital misallocation. We find strong evidence for
these mechanisms in the data. The estimated model reveals that climate-induced misalloca-
tion costs 9% of global TFP annually and accounts for 9% of cross-country productivity dif-
ferences as well as 15% of income inequality. These findings emphasize the importance of
incorporating firm-level heterogeneity into climate policies and highlight improving mid-
range weather forecast accuracy as a cost-effective adaptation strategy.
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1 Introduction

Rising temperatures due to climate change have been estimated to cause sizable aggregate
economic losses. A natural question then is: what are the underlying drivers of these large
economic losses from temperature? Research on this question has largely focused on how
temperature worsens production technology, often interpreted as damages to physical pro-
ductivity. At the micro level, empirical work has shown that extreme temperature conditions
can affect within-firm productivity, especially labor productivity (e.g. Zhang et al. 2018; So-
manathan et al. 2021). At the macro level, a mix of structural and empirical studies prioritizes
aggregate productivity damage as the primary effect of climate change (e.g. Barrage and Nord-
haus 2023; Cruz and Rossi-Hansberg 2023; Nath 2023). These studies benchmark their results
in models of efficient economies, with little to no role for micro-level distortions.

Our paper adopts a different approach. Instead of focusing solely on physical productivity
losses due to rising temperatures, we study how climate change results in aggregate TFP losses
by increasing capital misallocation across firms, in the spirit of the seminal work by Hsieh and
Klenow (2009). The misallocation channel should come as no surprise. For instance, con-
sider a regional economy consisting of firms with varying degrees of heat sensitivity: some are
heat-loving, while others are heat-sensitive. Although all firms endure the same regional heat
shocks, the impact may vary significantly. Heat-loving firms tend to be less affected and re-
main more productive compared to heat-sensitive firms. Given that capital is generally hard to
adjust in the short term, a heat shock affecting all firms would lead to dispersion in capital re-
turns across firms, with heat-loving firms having higher marginal revenue products of capital
(MRPK) than heat-sensitive ones. This is a clear case of climate-induced misallocation: aggre-
gate productivity and output could increase if more capital was reallocated from heat-sensitive
firms to heat-loving ones that have higher marginal products. Therefore, the across-firm misal-
location channel of climate change could result in depressed aggregate TFP. The misallocation
channel has direct implications for adaptation policy: policies should aim not only to mitigate
average damage but also to reduce disparities in firms” adaptability to climate change.

Our goals in this paper are threefold: first, to causally identify the misallocation channel
using temperature shocks and assess its quantitative impact under future climate change sce-
narios; second, to understand the drivers of climate-induced misallocation from a firm dynam-
ics perspective; and third, to uncover novel implications for climate mitigation and adaptation
policies suggested by the misallocation channel.

We begin by developing a climate-TFP accounting framework, reminiscent of Hsieh and
Klenow (2009). Our accounting model features heterogeneous firms with climate-driven in-
put distortions that can unevenly affect the marginal products of factors across firms. This
framework allows us to decompose the region-sector level aggregate TFP into a set of firm-
level sufficient statistics, which measure the efficient frontier (i.e., technology) and losses from
capital misallocation. Specifically, the cost of capital misallocation is measured by the variance
of (log) MRPK across firms in a given year at the region-sector level. We can thus exploit panel
variations in across-firm MRPK dispersion resulting from exogenous temperature shocks to

causally identify the extent of misallocation stemming from temperature-related distortions.



To measure the dispersion in the marginal products within individual sectors in each sub-
national region annually, we use firm-level data from 30 European countries extracted from the
BvD Orbis dataset, as well as data from China and India obtained from government-conducted
surveys. We construct historical climate variables and temperature forecasts for each region
using the ERA5-Land gridded daily temperature data from the European Centre for Medium-
Range Weather Forecasts (ECMWEF). Our sample covers regions with a wide range of economic
and climatic conditions. Our estimation reveals a U-shaped pattern: both extreme heat and
cold increase measured capital misallocation. Notably, an extra hot day with a temperature
above 30°C (86°F) relative to a day in the 5-10°C (41-50°F) range within a year increases MRPK
dispersion by about 0.31 log points, which translates to a 0.11% annual aggregate TFP loss.
Our findings also suggest that the misallocation channel is a dominant force in aggregate cli-
mate damage, given that technical efficiency losses from heat are estimated to be only one-fifth
as large as misallocation losses. Importantly, we estimate the heterogeneous effects of tem-
perature on misallocation across long-run regional climates and income levels. We find that
the effect of heat shocks on capital misallocation is more pronounced in hotter and more eco-
nomically developed regions, indicating limited potential for market adaptation to mitigate
aggregate misallocation losses as economies develop and climates warm over the long run.
Moreover, the estimated heterogeneous effects based on our microdata align remarkably well
with estimates derived from aggregate data (i.e., country-level GDP per capita).

What do our estimates imply for the misallocation cost of future climate change? We
project the impact of global warming on misallocation-induced TFP loss by the end of the
century using our estimates of the heterogeneous temperature-misallocation effect. Coupled
with the climate projections from the CMIP6 model and income projections from the OECD
Env-Growth model under the SSP3-4.5 scenario, our estimates indicate that, compared to cur-
rent income and climate levels, the global cost of climate-induced misallocation will amount
to 36.73% of aggregate TFP by the end of the century. Empirically, the projected loss can be
decomposed into three channels: a 2.13% contribution from the shifted daily temperature dis-
tribution, 19.46% from the income effect of projected economic development, and 11.34% from
the level effect of the long-run average temperature increase. The projected losses are large
and growing over time as more regions transition into richer and hotter economies with more
extreme temperature realizations. The magnitude of these estimates is comparable to the pro-
jected impacts reported by Burke, Hsiang, and Miguel (2015) and Bilal and Kanzig (2024).

The second goal of our paper is to understand the drivers of the identified climate-induced
misallocation. To explain why both the shock distributions and levels of temperature are rele-
vant for the dispersion in capital returns, we develop a firm dynamics model featuring time-to-
build capital and rich temperature-productivity interactions. Specifically, we allow firms’ pro-
ductivity to be heterogeneous in their persistent and idiosyncratic sensitivities to temperature.
The persistent sensitivity reflects a firm’s specific characteristics and whether it is heat-loving
or heat-averse by nature of its production (or demand). Persistent sensitivity is assumed to be
known by the firm and to affects its capital investment decisions. For example, when antici-
pating future heat, a heat-averse firm will invest less than an average firm due to its relatively
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signed to each firm at each period. It reflects the increased likelihood of severe disruptions at
the firm level, such as plant-level fire hazards, equipment failures, or operational shutdowns,
associated with extreme climates. As idiosyncratic sensitivity is unknown to the firm ex-ante, it
does not affect the firm’s capital investment decisions (to the first order). However, it generates
unexpected productivity shocks and, consequently, affects the firm’s MRPK upon realization.

The heterogeneity in persistent and idiosyncratic sensitivities across firms shapes two chan-
nels through which temperature affects misallocation. First, shifts in the level of tempera-
ture (toward extreme heat or cold), operating through idiosyncratic sensitivities, would in-
crease the probability of experiencing extreme events across all firms. Such regions experience
higher temperature-induced damage volatility across firms and, consequently, greater capital
misallocation. Second, unexpected shocks in temperature impact investment returns differen-
tially across firms based on their persistent sensitivities. For example, an unexpected heat
shock reduces the MRPK for heat-averse firms but might raise the return for heat-loving ones.
From an ex-post perspective, heat-averse firms, anticipating higher productivity than real-
ized, over-invested in capital. Therefore, greater temperature forecast accuracy could lead to
more efficient capital allocation across firms and raise aggregate TFP. Overall, these two chan-
nels closely explain our reduced-form results: the level effect of temperature, through damage
volatility, explains why a region-sector’s geographical location and long-run climates matter
for capital misallocation, while the forecast error effect explains why larger weather shocks lead
to increased misallocation.

We empirically test the mechanisms of our model by exploiting variations at both the
firm and region-sector levels. First, we examine the link between heterogeneous sensitivi-
ties and differential MRPK responses to temperature shocks using firm-level panel data. As
firm-specific sensitivities are hard to measure directly, we use firm size and AC installation as
proxies. This approach allows us to test how firms” MRPKSs respond heterogeneously to identi-
cal heat shocks within a region-sector. Our estimates reveal that heat shocks significantly lower
the MRPK for smaller firms and firms without AC but have minimal impact on the MRPK for
larger firms and AC-equipped firms, as they are less sensitive to temperature. Additionally, the
role of firm size as a determinant of heterogeneous sensitivities helps rationalize the income
effect identified in our reduced-form regression. We find that regions with higher levels of
economic development exhibit greater dispersion in firm sizes, leading to greater differences
in adaptability to shocks among firms. This, in turn, results in higher dispersion of persistent
sensitivity across firms and increased susceptibility to misallocation due to temperature shocks
at the aggregate level.

Next, we estimate and evaluate the quantitative implications of the level and forecast er-
ror effects using model-implied regressions. We empirically test the level effect by estimating
how temperature levels non-linearly affect TFP volatility and MRPK dispersion across firms
at the region-sector level. Our findings confirm the model’s predictions that temperature ex-
tremes increase damage volatility: TFP volatility exhibits a U-shaped relationship with tem-
perature. We identify an optimal temperature of around 12-13°C, at which point TFP volatility
reaches its lowest level, thereby imposing the least burden on allocative efficiency and ag-
gregate TFP through the level effect of misallocation. We also provide direct evidence of the



forecast error effect using forecast data from the monthly long-range temperature forecasts
released by ECMWF (Copernicus Climate Change Service and Climate Data Store 2018). By
aggregating these monthly long-run temperature forecast errors at the region-year level, the
model-induced regression shows that, conditional on realized temperature, a 1°C error in tem-
perature forecasts for all months leads to at least a 1.6 log-point increase in MRPK dispersion.
Such an increase in capital misallocation is equivalent to an approximate 0.58% annual aggre-
gate TFP loss when compared to the perfect information counterfactual. Our findings suggest
that temperature forecast errors are costly: unexpected temperature shocks lead to dispersion
in investment mistakes among firms due to their varying sensitivity to heat. Therefore, our
model highlights the aggregate importance of accurate temperature forecasts as they increase
the allocative efficiency of capital.

Using the model parameters identified in the model-induced regression, we quantitatively
assess the global cost of climate-induced capital misallocation, demonstrating that permanent
climate differences and imperfect weather forecasts together impose substantial productiv-
ity losses. Combining the estimated model with granular climate and forecast data from
around 4,000 regions since 1981, we find that eliminating climate-related dispersion in firm-
level MRPK would raise global TFP by about 8.9%. Most of this loss arises from persistent
climate deviations from the optimum, contributing around 8.34% to the TFP gap, while fore-
cast errors account for only 0.56%. Over time, rising global temperatures since 1981 have
further displaced regions to be more volatile, lowering aggregate TFP by an additional 2.49%.
Although improvements in weather forecasts have offset some of these adverse effects, the
dominant force remains the ongoing rise in global temperatures. Furthermore, our model
effectively fits the cross-country dispersion and within-country evolution of the measured ag-
gregate TFP data from Penn World Table, and the climate-misallocation channel explains about
9% of cross-country TFP differences. Holding climate-induced misallocation at its 1981 level
would have raised cumulative global TFP growth since 1981 by an additional 3 percentage
points—equivalent to roughly 23% of the observed increase of 13.5 percentage points. Our re-
sults also uncovers the role of climate in global income inequalities. Although the dispersion of
global income fell from 2.09 to 0.83 from 1981 to 2019, the share attributable to climate-induced
misallocation rose from about 3% to 14%, indicating that a warming climate slows the pace of
income convergence and entrenches inequality by reducing aggregate productivity in hot and
poor countries.

Lastly, we discuss how our findings shed new light on the design and effects of climate
mitigation and adaptation policies. Specifically, we explore three types of policies that could
potentially reduce the cost of climate-induced misallocation. First, we consider mitigation
policies that reduce the end-of-century temperature rise from 4°C to 2°C. Our results project
an avoidable TFP loss of 22% globally under RCP 2.6 compared to RCP 7.0. Compared to
the benefits of avoided misallocation losses, the estimated cost of optimal mitigation policy
from DICE-2016R is very moderate and largely outweighed by the benefits by 2100. Second,
we evaluate the potential of improving mid-range weather forecast accuracy as an adaptation
policy, which has already seen success since the 1980s and demonstrates a large benefit-cost

ratio according to our model estimates. Finally, from a micro perspective, our results broadly



suggest that policies reducing the “climate inequality” of impact sensitivity among firms could
mitigate the misallocation losses from extreme climate events. Policies should be directed to
identifying and subsidizing firms that are productive but lack the resources to defend against
heat. Our results also highlight that there need not be an equity-efficiency trade-off in the
context of heterogeneous firms. If firms exhibit more uniform adaptability to temperature, the
aggregate economy also achieves greater allocative efficiency.

We conclude that capital misallocation is a quantitatively important channel through which
climate change affects the aggregate economy. Climate-induced misallocation stems from sub-
stantial cross-sectional firm-level heterogeneity in temperature sensitivity. The estimated loss
due to misallocation across firms is considerable, indicating that the average effect of firm-
level productivity loss alone is insufficient to capture the aggregate cost of climate change in
the economy. Our results suggest that climate policies that solely target the average effect,
while overlooking firm heterogeneity, may have limited efficacy.

Contributions to the Literature. This paper relates to a large literature on measuring the eco-
nomic damages from temperature shocks and climate change. One canonical approach is to
directly estimate the effect of temperature shocks on aggregate region-sector, country, or global
outcomes (See Dell, Jones, and Olken 2012; Burke, Hsiang, and Miguel 2015; Lemoine 2018;
Carleton et al. 2022; Nath, Ramey, and Klenow 2023; Bilal and Kéanzig 2024, among others).
Another strand of work estimates the average firm- or worker-level productivity damages from
climate change and explores the underlying micro-level mechanisms (Somanathan et al. 2021;
Acharya, Bhardwaj, and Tomunen 2023; Ponticelli, Xu, and Zeume 2023). Most studies inter-
pret their findings as physical productivity losses resulting from climate shocks. This paper
contributes to this literature by taking a conceptually different approach: we focus on how
climate change could drive down aggregate productivity by causing the across-firm misalloca-
tion of capital. We show that a sizable portion of aggregate climate impact is allocative rather
than purely physical. Our approach estimates a large causal effect of the misallocation channel
from climate shocks and projects substantial TFP loss across all future climate change scenar-
ios. Quantitatively, we uncover novel heterogeneity in climate-induced misallocation losses
across regions with different levels of development and climates.

Second, regarding the macroeconomic modeling of climate change, the existing studies
have incorporated climate change into workhorse macro and trade models of efficient economies
(Nath 2023; Cruz and Rossi-Hansberg 2023; Bakkensen and Barrage 2021; Casey, Fried, and
Gibson 2022; Rudik et al. 2021). Naturally, these models remain silent on the causes and ef-
fects of how climate change drives distortions and misallocation of productive factors in the
economy. This paper provides a static general equilibrium framework to measure the costs of
the temperature-induced misallocation channel using an easy-to-implement sufficient statis-
tics approach. We also build a firm dynamics model to better understand the endogenous
mechanisms behind climate-induced misallocation, which stem from firm-level heterogeneity, a
previously overlooked but quantitatively significant dimension in the climate-macro literature.
Very few studies have explored the allocative effect of climate change. Perhaps the closest to
our paper is the contemporaneous work by Caggese et al. (2023). They project how the fu-



ture geographical distribution of temperature shocks in Italy might lead to differential factor
productivity of firms across micro-regions under future global warming, and thus allocative
efficiency losses could be predicted. In contrast, our paper provides a direct causal estimate
of climate impacts on within-region marginal product dispersion across firms using historical
regional climate variations and firm-level data drom 32 countries globally. It is a direct mea-
sure of misallocation (as in Hsieh and Klenow 2009 and Sraer and Thesmar 2023) and captures
all channels of climate-induced misallocation, not just those stemming from the geographical
distribution of temperature.

Third, our research contributes to the burgeoning literature on the impacts and economic
value of weather forecasts. Recent work evaluates the market internalization of weather fore-
casts (Schlenker and Taylor 2021), agents updating beliefs in response to forecasts (Shrader
2023; Kala 2017), and the economic values of reducing mortality with more accurate forecasts
(Shrader, Bakkensen, and Lemoine 2023). We show evidence that inaccuracies in forecasts
result in more frequent investment mistakes in the cross-section of firms and thus reduce ag-
gregate productivity. Our research supports micro-level findings at the macro level and em-
phasizes the vital role of accurate weather forecasting in reducing economic disruptions and
boosting productivity.

Finally, we contribute to the literature on misallocation. Since the seminal contributions by
Restuccia and Rogerson (2008) and Hsieh and Klenow (2009), a large body of work has stud-
ied the aggregate (e.g., Gopinath et al. 2017, David and Zeke 2021) and firm-level (e.g., Asker,
Collard-Wexler, and De Loecker 2014, David and Venkateswaran 2019, Baqaee and Farhi 2019)
drivers of misallocation. Our paper adds to this literature by demonstrating that environmen-
tal factors, such as temperature variations and climate change, are also sources of misallocation
and might become increasingly important as global warming worsens. Additionally, our pa-
per connects to a small but growing body of literature that studies the causal identification
of the drivers of misallocation using (quasi-)natural experiments (Sraer and Thesmar 2023,
Bau and Matray 2023, among others). These studies employ exogenous shocks to explore the
causes and consequences of misallocation. We expand on this literature by using exogenous
temperature variations to examine the impacts of climate change as a driver of misallocation.

The structure of the paper is organized as follows. In Section 2, we develop our climate
growth accounting framework. Our data sources and methodology for constructing variables
are detailed in Section 3. Section 4 presents our empirical identification strategy and reduced-
form results. Section 5 introduces the firm dynamics model to explain the underlying mech-
anisms. Evidence at the firm level, which tests the proposed channels, is provided in Section
6. Section 7 offers evidence and quantitative results of the model at the aggregate level. We
discuss implications for mitigation and adaptation policies in Section 8, and we conclude in

Section 9.

2 A Framework for Climate TFP Accounting

In this section, we develop a climate-TFP accounting framework by extending Hsieh and

Klenow (2009)’s distorted closed-economy model of heterogeneous firms to flexibly capture



climate’s firm-specific effects on productivity, demand, and wedges, and to quantify their
aggregate implications. We show how climate shocks might affect aggregate productivity
through two distinct channels in a distorted economy: lowering micro-level productivity (tech-
nology) and increasing the dispersion in marginal products (misallocation). We derive mea-
surable sufficient statistics for both channels, guiding our empirical strategy in Section 4. We
deliberately abstract from the exact mechanisms driving climate-related wedges to keep the
accounting framework general. This allows our empirical strategy to measure all channels
through which climate might lead to across-firm marginal product dispersions. We will return

to the question of why in Sections 5, 6, and 7.

2.1 Model Preliminaries

Consider an economy comprised of R regions indexed by r, and S sectors indexed by s. We
use n = (r, s) to denote a region-sector pair and there are N = R - S region-sector pairs. We
focus on the aggregation of firm-level economic activities within a region-sector pair. We allow
all fundamentals of firm ¢ in the market n = (r, s) to be arbitrary functions of a general array
of (current and past) regional climate conditions, T,., the aggregate states of the economy, Xnt,
and the idiosyncratic states of firm i, Z i  This general representation accommodates a wide

range of structural models in our accounting framework.

2.2 Aggregation Model with Micro Effects of Climate Conditions

We now describe the aggregation model and how we incorporate the micro effects of climate

conditions into the model.

Aggregate Region-Sector Production. Total output Y;,; for region-sector n is given by a con-
stant elasticity of substitution (CES) production function of differentiated products of measure

T2
Jn 1 on—1 %
Yoi = ( / By, o di) : (1)
0

where B,;; is a good-specific preference shifter, Y;,;; denotes the output of firm i and o, > 11is

the elasticity of substitution between products within region-sector n. Profit maximization of
industry output producers leads to the inverse demand function for the output of each firm,
Yoit:

Poir] 7"
Ynit = Bm’tYnt |: mt:| )

im )

1. For concreteness, one can think of current climate conditions, T, as realizations of daily temperature, pre-
cipitation, and other types of extreme weather events. X,,; and Z, can be interpreted as other aggregate and
firm-specific productivity or demand shocks. The data generating process of (Trt, Xnt, Znit) could be stochastic.
We use the tilde notation, (Tm Xnt, Znit), to denote the history of realizations up to date t. Also, we do not take a
stance on whether X,,; and Z,,;; depend on T..

2. In theory, J,, the local variety, could also vary over time to capture how climate might affect firm entry and
exit. However, accurately measuring these dynamics within a granular region-sector pair over time is challenging
due to data limitations, particularly for cross-country analysis. Therefore, the model does not address this aspect.



1

where P,,; = ( fo n Bth;; In di) 77" s the price index in region-sector n. The demand shifter

Bpit = Bpi(Trt, Xnt, Zyit) is a firm-specific function of climate and economic conditions, cap-
turing how certain goods or services may be less desirable in hotter climates.?

Firm-level Production. Each product is produced by a single firm with a constant returns-
to-scale Cobb-Douglas production function

Yoit = Apir K5 Lokn 3)
where A,;; = Am(’i‘rt, Xt th) denotes physical productivity of firm 4, and K,;; and Ly,
are capital stock and labor input employed by i.* The parameters satisfy ax, + ar, = 1. The
physical productivity of firm i is modeled as a firm-specific function, A,;;: = A (Trt, Xt Zm-t),
to capture the different sensitivity to heat (or cold) among different firms within and across
various region-sectors. Such heterogeneity can be potentially attributed to the distinct nature
of production processes across firms and varying levels of adaptability to climate conditions.”
Even within the same region-sector, heterogeneity arises: in agriculture, rainfed farms endure
more heat stress than irrigated farms (Piao et al. 2010), while in manufacturing, workers with

AC installations are less vulnerable to heat than those without (Somanathan et al. 2021).

Wedges. Each firm faces a variety of frictions, including climate-related ones. Regardless of
their structural origins and for pure accounting purposes, we describe them as time-varying
and firm-specific wedges that distort the static equilibrium decisions of firms operating in
otherwise (monopolistically) competitive markets. Subject to the inverse demand and wedges,
each firm ¢ engages in monopolistic competition and optimally chooses its quantity of inputs
and price to maximize profits:

max (1 —72) Puit At KoEm Lo — (1 + 785)) Rt Kpie — (L4 75%,) WotLnie — (4)
N

Pnit:Knitanit i3 ot
Ynit
. Py ] 7"
SUb]eCt to: Yo = BpitYnt |: - ,
Pnt

where R, is the user cost of capital and W, is the wage. The output wedge 7.;, distorts

output prices, while the input wedges 7%, for I’ € {K, L} changes the effective marginal cost

of each factor from its market rate. We assume all firms take these wedges as given for now
and turn to model the endogenous nature of these frictions and their relationship with climate
change in Section 5. As with demand shifters and productivity, we assume they are firm-

3. This is particularly evident in service industries where climate can sharply affect consumer behavior. For ex-
ample, Zivin and Neidell (2014) find that heat shocks shift Americans from outdoor to indoor recreational activities
(e.g., away from recreational fishing as found by Dundas and Haefen 2020). Anecdotal examples in food services
include ice-cream parlors versus hot tea shops.

4. Ay is a measure of quantity-based total factor productivity (TFPQ), reflecting the overall efficiency with
which the firm uses its inputs to produce units of physical output. TFPQ cannot be directly measured in the absence
of price or quantity data, barring any additional structural assumptions (see, for example, Bils, Klenow, and Ruane
2021).

5. For the cross-country heterogeneity in productivity damage due to adaptation, see Nath (2023).



specific functions of climate and of the region-sector and firm states.

What might appear as wedges in this accounting exercise? For instance, the output wedge
T%;t = Té(fm )~(nt, th) reflects potential heterogeneity in revenue taxes and markups rela-
tive to the Dixit-Stigliz benchmark. These market imperfections could potentially be amplified
by temperature shocks changing the local market structure (Ponticelli, Xu, and Zeume 2023).
Similarly, input wedges, Tfit = 7’75- (Tm S(m, Zm-t), capture all channels through which firms
are disincentivized from using inputs F' € {K, L}, as if they were effectively paying higher
factor prices.® For instance, firms with more exposure to adverse climate conditions may
encounter worse financing frictions (Ginglinger and Moreau 2023). Importantly, in the con-
text of dynamic input choices with adjustment frictions, such as capital, the wedge function
7K (T,4,-) also accounts for ex-post investment mistakes triggered by unanticipated tempera-
ture shocks (e.g. when a heat-averse firm invested too much capital before a severe heat wave),
in reminiscence of Asker, Collard-Wexler, and De Loecker (2014) and David, Hopenhayn, and

Venkateswaran (2016).

Equilibrium. The total factor supply in the region-sector n are given by K,; = >, Kp;; and
Ly =5, L.’ The equilibrium allocations in a region-sector depend on the set of fun-
damentals ({ Bt }i, {Anit }i, {75 iy {Tnit } 7oy {Fnt }F). Given preference shifter By, physical

productivity A,;:, output distortions 7\,

factor distortions {7}, } r for all firms i, aggregate
prices P,;, and total factor supply of K, and L,;, an equilibrium in region-sector n con-
sists of goods prices P,;, factor prices {PEYE, and a set of factor allocation {F,;} F,; that
solves all firms” problems in (4) and all markets clear. We call the equilibrium defined by
({Bnit}i, {Anit }is {Tét}i, {Tnit } Fiis {Fnt } F) the distorted equilibrium and the equilibrium defined
by ({Buit }i, { Anit }i, {0}i, {0} Fiiy { Fut } ) the efficient equilibrium.® We will use an asterisk (*) to

denote the efficient equilibrium outcomes.

Wedges and Misallocation of Inputs. As these wedges distort firm-level input choices, they
also create measurable differences in marginal products across firms. For any input F' €
{K, L}, the firm’s optimality condition implies that the marginal revenue product of factor

F (MRPE),
on — 1 PuitYnit _ 1+ Tfj(Trty .)P;;, (5)
on  F 1— 7Y (T, )

MRPFnlt = af,

is proportional to the firm’s revenue-to-factor ratio and must equal the wedge-adjusted market
1+7—,f; (T'rtv) PF

S 17 (Try,)” ™

F, discouraging its use and thus elevating MRPF. Conversely, a lower output wedge 7.7, (T,+, )

price A higher input wedge 1 + 7.5(T,4, -) increases the effective cost of factor
raises the effective price of the firm’s output, encouraging the use of factor ' and consequently
lowering MRPF. Therefore, heterogeneity in how wedges respond to climate change can al-

ter the cross-sectional dispersion of MRPF—often termed “misallocation”—as inputs may not

6. Naturally, for a firm to be active, it is necessary that all prices are positive, which requires 1 — 7,1;, > 0 and
1+7h, >0

7. The total factor supply is treated as exogenously given every period. We could also model the total factor
supply to be region-sector specific functions of the form: Ly; := Ln(Trt,-), Knt := Kn(Trt,-), but this plays little
role in our TFP accounting.

8. Again, we stress that, in the accounting framework, efficiency is defined in a static and unconstrained sense.
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flow to the firms that would use them most efficiently. The wedges would thus also change
the size of the firm. By writing down firm i’s sales share 6,,;; in n,

(1775/ )(ffn—l)

BnitAoﬁil nit
nit n\2Fn(on—1)
0. — PritYnit . HFe{K,L}(l"'Tfit) " (6)
T P Yaudi O ) N ’
0 nit L nit fon BnitAani nit di

nit NoFnEn—T)
HFE{K,L}(1+Tfit) e

we see that, unsurprisingly, a positive input wedge makes the firm inefficiently small and
negative output wedge makes the firm inefficiently large. We proceed to explicitly characterize
how these wedges lead to the equilibrium (mis-)allocation of factors as follows.

Proposition 1 Equilibrium (Mis)Allocation. The (log) ratio of firm i’s distorted and efficient equi-

librium allocation of factor, Zxit,
nit
(1) = 1o LTt 4 1o Ot
Fra 1+ 7k Orit
relative wedge size
effect effect
is decreasing in the ratio of firm i’s own factor wedge comparing to the aggregate factor wedge 1+ Tft =

nit

n 1 . . . . . . , . .
( fo (HTF)Om-tdz> , and increasing in the ratio of the firm’s sales share 0,;; comparing to its

- . . Fr, Byt AS7 "
+ * nit +
Moreover, the efficient allocation of inputs, it = 0y, = 5 ——2b ——,
Jo " Brit Ay di

is entirely determined by firm i’s relative preference shifter and physical productivity within the region-

*
nit”

efficient counterfactual 0

sector and aligns with sales share 0} ,,.

Proof. See Appendix A.2. m

Proposition 1 highlights the two effects through which wedges distorts the equilibrium
allocation of factor F'. The relative wedge effect captures how a higher input wedge on F' makes
it more expensive firm ¢ pays for factor F' relative to the region-sector’s average. Firm 7 is more
discouraged from employing factor F' and thus ends up with using less of it than under the
efficient benchmark. The size effect captures how any wedges firm i faces would make the firm
inefficiently small, leading to a smaller sales share 6,,;; compared to efficient level ¢}, and thus
suppresses the usage of all inputs.

First, they shift the efficient allocation by directing more capital to firms that suffer less
heat damage or produce goods with higher demand under hot conditions. Second, they can
introduce heterogeneous frictions in the capital market—such as adjustment costs or financing
constraints—that distort firms’ cost structures and potentially prevent some productive firms

from securing an optimal amount of capital.

2.3 Aggregation, TFP Decomposition and Cost of Misallocation

We proceed to perform aggregation in this accounting framework. We adopt a widely-used
assumption in the misallocation literature (Hsieh and Klenow 2009 and Sraer and Thesmar

2023) that productivity, demand shifter and all associated wedges follow a joint log-normal
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distribution across firms in any region-sector-year pair, which holds very well in the data.

‘>, the joint
distribution of the realized values of the sets of functions, S,;: = (Bni(-), Ani(+), 1 fl— 7-2;(), 1+
7K(.), 1+ 7L(.)), can be characterized as follows:

More formally, we assume that for any given set of arguments (Tm Xm, {th}

log(snit) ~ N (Nn (Trt7 Xnt)v 2n (Trt7 Xnt)) . (7)

Here, ,un(TTt, )N(nt) represents the mean vector of firm-level fundamentals, while En(TTt, )N(nt)
is the covariance matrix of these fundamentals across firms. Each element of these are smooth
functions of their respective arguments, since they are population moments of S,,;: and each
element of which themselves are smooth in its arguments. For tractability, we adopt the ag-
gregation notation of Krusell and Smith (1998) that the distribution of firm-level fundamentals
Z.it (over i) can be summarized by a finite set of moments and stacked into the aggregate states
of the economy X,,;. Thus, pn and X, are region-sector-specific functions of only T,: and X,,;.
The log-normality assumption allows us to transparently show how micro-level wedges are

translated into losses in aggregate productivity:

Proposition 2 Aggregation and TFP Decomposition. Under the log-normality assumption, each
region-sector n admits an aggregate production function of the form

Yot = TFP, KOfn Lo 8)

nt

where the region-sectoral aggregate Total Factor Productivity TFP,; := TFP, (Tm 'Xnt) can be de-
composed as follows:

log TFP,,(Tyy,-) =

e |

op — 1
Technology(log TFPE,)
2
on - apn + agp,(op — 1) -
-5 Varlog(l—T{i)(Trta )= Z 5 Varlog(HTTZ)(Trt, )
Fe{K,L}
Output Wedge Dispersion
Factor Wedge Dispersion
istoation | 10 ¥y sntrsoty (T
Loss Fe{K,L}

Output-Factor Mixed Distortion

- (Uﬂ - 1)0&KnOéLn COVlog(l-l-Tﬁ),log(l—i-T#i) (Trt’ ) :

\ Factor Mixed Distortion

©)

Proof. See Appendix A.3. m
Proposition 2 decomposes the aggregate TFP into two terms: technology and misallocation

~ ~ on—1
loss. The technology component, log TFPft = ﬁ log [JnIEi [Bm(Trt, ) (Am-(Trt, )) H,
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is a CES aggregation of demand shifter and physical productivity of all firms. This represents
the production possibility frontier of the economy. We label this term technology in the spirit of
Basu and Fernald (2002) and Baqaee and Farhi (2019).

The rest of the terms represent the TFP cost of wedges in the economy, referred to as
misallocation loss. All the variance and covariance terms are elements in the variance matrix
En(Trt, Xnt) in Equation 7, and are thus themselves functions of climate and other economic
fundamentals. They describe how these conditions would alter the distribution of wedges over
the cross-section of firms. Dispersion in output wedges var, g(1-7Y) and factor input wedges
Vallog(147F) will both lead to dispersion in the marginal revenue products across firms, creat-
ing more misallocation of factors and lowering region-sector TFP. The impact of var, g(147F)
on TFP are increasing in o, and ap,, as higher product substitutability and larger factor share
both imply larger gains of reallocation for a given factor wedge dispersion. Furthermore, the
interactions of wedges also impact productivity. All else being equal, more productivity losses
occur when (1) firms facing higher tax on output are also those enduring higher input prices
(covlog(lfnz )dog(147F) < 0), and (2) firms experiencing capital distortions are also more likely

to face higher labor distortions (cov,, o > 0). These interactions are often re-

1+7£),10g(1+7§i)
ferred to as “mixed” distortions.

2.4 Decomposing the Impact of Climate Change on Aggregate TFP

Since all moments in Equation 9 are smooth functions of climate conditions Trt, we can decom-
pose the (first-order) total impact of climate change on TFP via a set of measurable derivatives

for each relevant moment. We formalize this in a case when only capital wedges are present.

Benchmark case: only capital wedges are present. We now consider a benchmark case
where only capital wedges are present, as is common in the misallocation literature (see,
for example, Asker, Collard-Wexler, and De Loecker 2014, David and Venkateswaran 2019,
and Sraer and Thesmar 2023). This focus stems from the view that capital, unlike labor, is a
more dynamic input that is often financed externally, requires significant adjustment costs, and
typically cannot be reallocated on short notice. These features magnify distortions in capital
usage—such as through credit frictions or investment irreversibility—and lead to potentially
larger and more persistent misallocation relative to labor (Gorodnichenko et al. 2018). Conse-
quently, how and why capital misallocation is affected by climate conditions will be the main
focal point throughout the paper.

When the capital wedge is the only source of distortions in the economy within region-
sector n, the MRPK of each firm i satisfies that: MRPK,,;; = « Kn(’g—;l P}(f—z” x (1+ Tﬁt)Rnt. The
dispersion of capital wedges is therefore given by the variance of log(MRPK) across firms,

PuYi
var(log(1 + 7nit)) = var(mrpkp;) = var <log ( Iz' t)) ’ (10)

where we define mrpky;; = log(MRPK,;;). Equation 10 shows that the cross-sectional variance
of (log) capital wedges across firms is identical to the dispersion of (log) MRPK, which can
be computed via the variance of log sales over capital stock given the common Cobb-Douglas
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technology within the region-sector-year. We can now formalize how climate conditions affect
aggregate TFP via the following Lemma:

Lemma 1 With only capital wedges, the (first-order )impact of climate conditions on the aggregate TFP

of region-sector n = (r, s) can be decomposed as:

dlog TFP,(T,4,-) _ d Technology,,,  d Misallocation Loss,

dri‘rt dTr,«t d’i‘,f
~ ~ on—1
dlog E; | Byi(Ty4, ) (Ani(Trta )) ]
_ ! _ (11)
on — 1 dT,:
_ OKn + Ué?{n(an - 1) dvarmrpkm (T’V‘t7 )
2 dTrl‘, 7

The Misallocation Channel

where var, pk,.. (Trt, Xrt) = varje(14-K) (’i‘rt, Xﬁ) denotes a function capturing how n’s (log) MRPK

dispersion across firms changes with climate and economic conditions.

Lemma 1 shows that the total first-order effect of climate on aggregate TFP can be fully
described by changes in (i) technology and (ii) capital misallocation. The technology channel
boils down to the estimation of the (semi-)elasticity of the average firm’s demand-adjusted

productivity to climate. More importantly to the focus of our paper, measuring the cost of

. . . . . . d mr : I rty"
climate-induced misallocation reduces to estimating %’”(Tt)

rt
nel.” This result also offers practical guidance for the reduced-form approach in Section 4,
dvarmrpkni (’i‘rt )')
dTrt

In theory, the derivatives of our structural objects with respect to climate conditions are

—"“the misallocation chan-

which focuses on the causal estimation of

globally well-defined and could vary with the long-run evolution of climate and develop-
ment. However, in practice, they can only be well estimated with respect to the observed
equilibrium allocations. We will address this limitation explicitly in Section 4.4 to capture the

heterogeneous effect arising from long-term climate conditions and economic development.

3 Data

3.1 Global Firm-level Microdata

We compile a global sample of firm-level microdata from both developed and developing
economies that include 30 European countries, China and India, which covers 38.6% of world
GDP. The firm-level data for the 30 European countries are sourced from Bureau van Dijk’s
(BvD) Orbis database, while the data for China and India are obtained from government-
conducted surveys, the China National Bureau of Statistics (NBS) Annual Survey of Industrial
Firms, and the India Annual Survey of Industries (ASI). These datasets provide comprehensive
financial accounting information, including revenue, fixed assets, wage bills, and employment

tigures. The three datasets are widely utilized in the literature and could be regarded as na-
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tionally representative.’

Table B.1 provides a comprehensive list of countries, year coverage, and data sources for
the three datasets. For all datasets, we harmonize the sectoral classifications of all firms into
eight major divisions according to the U.S. Standard Industrial Classification (USSIC) code.”
Regions are defined to be the NUTS 3 regions in Europe, prefectures in China, and districts in
India. The size of these regions is close to the size of a county in the US.

Our primary economic variables of interest are the sufficient statistics of firm-level activities
that map directly into aggregate TFP at the region-sector-year level, in particular, the variance
of marginal revenue product of capital across firms. Thus, for all datasets we use, we restrict
ourselves to work with firm-year observations that report data on both revenue and capital
stock. We measure revenue F;;Y;; with the reported operating revenue in both Orbis and China
NBS data, and the reported total sales in India ASI. We use the book value of gross fixed assets
as a measure of firm-level capital stock K;;.!' For each country, we trim the observations of
extreme values of MRPK at 0.1%.

For all reduced-form analysis using region-sector-year level sufficient statistics, we restrict
our sample to the region-sector-year pairs with more than 30 firm-year observations of rev-
enue and capital stock data, to minimize the noises in the variance measures and preserve
log-normality in the data. To make sure variations in these sufficient statistics are not due
to changes in data collection patterns and measurement errors, we also drop the observa-
tions after which there are sudden jumps in the number of firms and aggregate sales in the
region-sector. The final region-sector sample is an unbalanced sample consisting 124,567 of
region-sector-year observations, covering 76,826,956 firm-year observations. For the firm-level
analysis in Section 6, we include all firm-year observations in the raw data after trimming the
0.1% extreme values of all firm-level dependent variables and covariates. Below, we provide a

brief overview of each of the datasets.

BvD Orbis. The firm-level data for the 30 European countries are drawn from Orbis, a database
maintained by Bureau van Dijk (BvD). Orbis originates from administrative records collected
at the firm level, primarily by each country’s local Chambers of Commerce. A significant ad-
vantage of focusing on European countries with Orbis is that company reporting is regulatory,
even for small private firms. It covers firms from all sectors and approximately 99 percent of
the companies included are private entities.

To organize and clean the Orbis dataset, we follow the approach in Kalemli- Ozcan et
al. (2024), Gopinath et al. (2017), and Nath (2023). A notable departure from the papers cited

9. A significant advantage of using the Orbis database for European countries is that company reporting is regu-
latory, ensuring comprehensive coverage even for small private firms. The China NBS surveys cover all industrial
firms with annual sales exceeding nominal CNY 5 million (approximately USD 0.61 million) from 1998 to 2007,
representing over 90.7% of total output. The India ASI includes large plants employing more than 100 workers and
a random sample of smaller plants registered under the Indian Factories Act, ensuring representativeness at the
state and industry levels.

10. The industries included are agriculture, mining, construction, manufacturing, transportation & utilities,
wholesale trade, retail trade, finance, insurance, and real estate(FIRE) and Services. We choose the SIC classifi-
cation mainly due to its availability in the Orbis Data.

11. The only exception is India ASI, which reports the book value of net fixed assets in a much more consistent
manner while the gross values are reported with a major amount of missing values.
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earlier lies in our method for expanding MRPK’s coverage. We include firms that have com-
plete data on revenue and capital (fixed assets) while allowing for variability in the extent of
coverage for other variables such as material costs, wage bills, and employee numbers.!? Each
firm in the Orbis data has its associated USSIC sector code, and its various address information
can be matched with a NUTS3 region in Europe. Different countries in Orbis have different
years of data coverage, detailed in Table B.1. We use the sample period of 1998-2018.

China NBS. The annual firm-level data for China is derived from surveys conducted by the
National Bureau of Statistics (NBS) in China. These surveys encompass all industrial firms
with annual sales exceeding nominal CNY 5 million (approximately USD 0.61 million) from
1998 to 2007. Such firms are commonly referred to as “above-scale” industrial firms.!® The
NBS data includes sectors such as mining, manufacturing, and utilities, with manufacturing
constituting more than 90% of the total observations in the dataset. In processing the NBS
data, we follow the methodology outlined in Zhang et al. (2018). Each firm in the dataset is
categorized using a four-digit Chinese Industry Classification (CIC) code and is harmonized to
the USSIC division level. Each firm’s reported location can be mapped into a prefecture-level
division. We only use the sample period of 1998-2007 due to inconsistent reporting after 2008
as discussed in Brandt, Van Biesebroeck, and Zhang (2014) and Nath (2023).

India ASI. Our data for India is drawn from India’s Annual Survey of Industries (ASI). ASI
is a census of large plants employing more than 100 workers and a random sample of about

one-fifth of smaller plants that are registered under the Indian Factories Act.!*

The sampling
procedure assures representativeness at the state and industry levels. Almost all plants in-
cluded in the ASI data are in the manufacturing sector. We match the plants to the Indian
districts following the approach of Somanathan et al. (2021). From 2001 to 2014, ASI also col-
lects whether the plant is AC equipped which we will utilize as a proxy variable for a firm’s

adaptability. We use the sample period of 1998 to 2018.

3.2 Weather and Forecast Data

Climate. For climate data, we use the land component of the European ReAnalysis, known
as ERA5-Land (Sabater 2019), produced by the European Centre for Medium-Range Weather
Forecasts (ECMWF). ERA5-Land is a reanalysis dataset that combines historical observations
with models to create a consistent time series of various climate variables. A main advantage
of ERA5-Land is its enhanced temporal and horizontal resolution. It provides hourly data on

surface variables at a spatial resolution of 0.1°longitude x 0.1°latitude (approximately 9 km),

12. Nath (2023) keeps the firms with complete revenue and labor data, while Gopinath et al. (2017) use a more
restrictive sample that only preserves observations having all production-related information in south European
countries.

13. Brandt, Van Biesebroeck, and Zhang (2014) shows that when comparing to the 2004 NBS census of industrial
firms that covers all industrial plants in China, these above-scale firms in the sample account for over 90.7% of the
total output.

14. As noted by Allcott, Collard-Wexler, and O’Connell (2016), large plants in the census scheme are defined as
factories with 100 or more workers in all years except 1997-2003 when it included only factories with 200 or more
workers. The sampling scheme for smaller registered plants included one-third of factories until 2004 and one-fifth
since then.

16



covering the entire world. Such high resolution allows for a clearer depiction of the spatial
patterns of surface temperature between neighboring locations.

Our analysis uses variables of air temperature at 2 meters above the land surface. We ag-
gregate daily average temperatures!® up to the annual level. Specifically, in our main specifi-
cation, we bin daily temperature every 5°C from -5°C to 30°C. Each temperature bin counts the
number of days in a year when the daily average temperature falls within specific temperature
ranges. This is calculated for every region in each year.

Figure 1a plots the difference of the number of hot days above 25°C in a year between
periods of our sample firm coverage, 1999-2008 and 2009-2018, and the baseline periods, from
1951 to 1980. The dark red color represents an increase of more than 13.2 days in a year with
temperatures above 25°C. Figure 1b depicts the daily temperature distributions in baseline
periods, sample periods, and the projection year of 2100. The global warming trend reveals
that the number of days above 25 has increased, and the number of days below 10 has reduced
in each country in the past decades. The temperature distribution shifts rightward when we
compare across and within countries, as climates grow warmer.

The use of temperature bins in our analysis better conceptualizes climate. Because cli-
mate change represents a long-term shift in weather patterns, the year-to-year variation in the
whole temperature distribution offers a more accurate depiction of climate change than merely
examining year-to-year variations in mean temperature. A key feature of climate change is the
increased frequency of extreme heat events (Oudin Astrom et al. 2013; Christidis, Mitchell,
and Stott 2023), therefore the increase in the number of extreme hot bins, indicative of a right-
ward shift in the tail of the weather distribution, captures the idea of global warming more

accurately.

Projection and Forecast. We collect global projection data computed by the sixth phase of
the Coupled Model Intercomparison Project (CMIP6).1® We use the SSP3-4.5 experiment in
our main analysis, which is based on the SSP3 scenario that involves high mitigation and
adaptation challenges, along with the RCP4.5 pathway with a radiative forcing of 4.5 W /m?
in the year 2100. The SSP3-4.5 scenario represents the intermediate greenhouse gas emissions
level with modest mitigation policy and is described as a more likely path (O’Neill et al. 2016).
We use SSP3-4.5 projection in the main analysis and present results from other scenarios in
Appendix C.4.
For weather forecast data, we collect the long-range (seasonal) forecast from ECMWEF (Coper-

nicus Climate Change Service and Climate Data Store 2018), which provides information about
atmospheric and oceanic conditions up to seven months into the future. The forecast data have

a spatial resolution of 1°longitude by 1°latitude.!” We collect forecast daily maximum and

15. The daily average temperature is the simple geometric average of the maximum and minimum temperatures.
The daily maximum temperature is identified by the highest value among the hourly temperatures, and the daily
minimum temperature is the lowest recorded value.

16. We use the GFDL-ESM4 model with a 1-degree nominal horizontal resolution produced by the National
Oceanic and Atmospheric Administration, Geophysical Fluid Dynamics Laboratory (NOAA-GFDL).

17. From 1981 to 2016, the forecast values were hindcasts generated with a 25-member ensemble. Starting in 2017,
they are forecasts produced monthly with a 51-member ensemble. These ensembles are run on the first day of each
month, providing forecasts for up to seven months ahead.
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minimum 2m temperature from the first day of each month from January to December with

forecasts up to 30 days measured in 724 lead-hours.

3.3 Other Data

Regional GDP. We collect regional-level global GDP data from DOSE (Wenz et al. 2023). We
then clean and map global GDP data to our firm and weather datasets using spatial coordi-
nates. This involves aligning different geographical units with administrative divisions like
NUTS, prefectures, and districts.

Income Projection Projections of national income per capita are collected from the SSP Database,
using the OECD EnvGrowth model (Dellink et al. 2017) hosted by the International Institute
for Applied Systems Analysis.

4 Estimating the Misallocation Channel of Climate Change

4.1 Identification Strategy

. . . . . d mr ; T’V' 7X7L
We seek to estimate the total causal effect of climate shocks on capital misallocation, Yetmrp k’“( ‘ t) .

N AT
Because X,,; may itself be influenced by climate as well, we consider a general function g such

that X,; = g(VVrt, Trt) where W,, is a set of variables that are not affected by climate. Note
that for each region-sector n = (r, s), combining the Taylor expansions around the observed

steady-state (VaTmpk, .., T,,X,,) of VarmTpk(Syr)i(’i‘,,«,t, X,,+) and X,; = g(W,, Tyy) yields:

Ty —Ty) + 6% - (W — W) + HO.T.

- 5T
Varmrpk@m)i(Tr,t) Xs,r,t) = Valmrpk(, . + )‘02

mrpk mrpk
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A : Tr,t + 605 - W st T Nsyrs
mrpk mrpk

(12)
where 7, , is a sector-region specific constant. For our benchmark exercise, we first estimate
the average causal effect sz o = E[)\Z’?ZTM] across all region-sectors and years and will revisit
the heterogeneous effects in Section 4.4.

We define current climate conditions, T,;, in terms of temperature bins, following the ap-
proach by Deschénes and Greenstone (2011) and Carleton et al. (2022). Specifically, T, is
a vector, Ty = {Tbin<; °"“, Tbin, ?~“ Tbin?;*"“, ..., Tbin?}*""“ Tbin}"“}, where each
element Tbinf,vt counts the number of days in year ¢ whose average temperature in region
falls into bin b. These bins, structured in 5-degree Celsius increments, cover a wide spectrum
of daily temperature variations, including extreme heat and cold. As noted in Deschénes and
Greenstone (2011), daily temperature data enable us to capture the nonlinear effects of weather
using linear regression models.

To estimate the causal effect of temperature on MRPK dispersion (i.e., misallocation), we

exploit interannual variation in the daily temperature distribution via the following panel re-
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Notes:

Figure 1: Climates of our sample regions
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Figure 1a plots the difference of average number of days above 25°C between sample periods and baseline
periods. The baseline period is from 1950 to 1980. The sample periods consist of two parts, 1999 to 2008, and 2009
to 2018. We calculate the 10-year average number of days above 25°C and deduct the 30-year baseline average
number of days to obtain the difference. Figure 1b plots the average daily temperature distributions for baseline
periods 1950-1980, two sample periods, and the projection year of 2100 under the SSP3-7.0 scenario.
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gression:

b - b
Varm?"i’k(s,r),t = Z )‘02 X Tblnr,t + aafmpk XS,T‘J + Ce(r),t + Nsr + Ersits (13)

veB/(00c)

where 17, , is the region-sector fixed effects, accounting for the unvarying attributes of MRPK
dispersion specific to each region-sector pair over time, consistent with the formulation in
Equation 12. a(,), is the country-by-year fixed effects, capturing the aggregate shocks to the
country c that region r resides in. Standard errors are clustered at the region level to account
for both serial and spatial correlations between all sectors across all years within each region
(NUTS 3 in Europe, province in China, first-level administrative divisions in India).

AP, are coefficients measuring the causal effect of one additional day in temperature bin
b on Cgﬁgmporaneous MRPK dispersion, relative to a day in the 0°C to 5°C range. We use the
0 ~ 5°C range as the reference category, so that the coefficient for this category is normalized
to zero. X ,; is a vector of logged control variables at the region-sector-year level, including
the total number of observed firms, average firm-level sales, and average (log) MRPK. The
first two control for sample size and business-cycle fluctuations, respectively. By including
average (log) MRPK, we aim to show that climate’s impact on MRPK dispersion is mostly not
driven by the mechanisms through which climate affects average productivity.'® However, in

L dX . .
our preferred specification, we exclude these controls because 7+ # 0, which could bias

Jt

/\’;2 as an estimate of the total effect. In practice, adding these controls has minimal impact
mrpk
on our results.

4.2 Average Effects of Temperature on Capital Misallocation

The baseline estimates and implied TFP losses are reported in Table 1, columns (1) and (5),
and depicted in Figure 2. In that figure, the left y-axis provides the scale of the estimated
coefficients \?, . To facilitate interpretation, we transform N, into the marginal effect on

mrpk mrpk

+ 2 —1) ¢ .
Qsn ey (On=1) Ab,  from Equation

aggregate TFP through the misallocation channel using —
11, applying an well-established conservative parameter choice of axy, ~"6.35 and op = 4
across all n.1 The right y-axis in Figure 2 then provides the scale of the implied TFP loss
associated with each temperature bin.

The estimated coefficients reveal that MRPK dispersion and the inferred TFP loss from
temperature-induced misallocation peak at the most extreme temperatures, both coldest and
hottest. This observed U-shape pattern between MRPK dispersion and temperature can also
be translated into an inverted U-shape pattern between TFP and temperature, a well known
result in the climate econometrics literature (Burke, Hsiang, and Miguel 2015).

For temperature bins above 25°C and below -5°C, the effects on MRPK dispersion are both
economically significant and statistically significant at 1% level. Specifically, the point esti-
mates indicate that substituting a day in the 5-10°C range with a day exceeding 30°C results in

an increase of 0.31 log points in MRPK dispersion, translating to a decrease of 0.11% in annual

18. Controlling for average MRPK also captures the average financial constraints across firms.
19. For the elasticity of substitution, we choose o, = 4 as in Bils, Klenow, and Ruane (2021). For capital share, we
pick a common value of axr, = 0.35.
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Table 1: Effects of daily mean temperature bins on MRPK dispersion and TFP loss

1) o2 () o? (3) o? (4) o? (5) Implied TFP Loss

mrpk mrpk mrpk mrpk
< —=5°C 0.0026™**  0.0025*** 0.0028***  0.0012 0.0935***
(0.0010)  (0.0009)  (0.0009)  (0.0023) (0.0342)
-5~ 0°C 0.0015**  0.0013**  0.0016***  0.0006 0.0526**
(0.0006)  (0.0006)  (0.0006)  (0.0013) (0.0212)
0~ 5°C 0.0004 0.0002 0.0005  -0.0019** 0.0131
(0.0004)  (0.0004)  (0.0004)  (0.0009) (0.0146)
10 ~ 15°C 0.0009**  0.0008**  0.0008**  0.0036*** 0.0308**
(0.0004)  (0.0004)  (0.0004)  (0.0010) (0.0137)
15 ~ 20°C 0.0013**  0.0012**  0.0014**  0.0045*** 0.0471*
(0.0005)  (0.0005)  (0.0005)  (0.0013) (0.0190)
20 ~ 25°C 0.0015**  0.0015**  0.0015**  0.0080*** 0.0546*
(0.0007)  (0.0007)  (0.0007)  (0.0020) (0.0259)
25 ~ 30°C 0.0028**  0.0027*** 0.0027***  0.0095*** 0.1008***
(0.0009)  (0.0009)  (0.0009)  (0.0021) (0.0331)
> 30°C 0.0031***  0.0030***  0.0030***  0.0090*** 0.1112%*
(0.0011)  (0.0011)  (0.0011)  (0.0021) (0.0401)
Controls No No Yes No No
Region-Sector FE Yes Yes Yes Yes Yes
Country-Year FE Yes No Yes Yes Yes
Country-Sector-Year FE No Yes No No No
1995 VA Weighted No No No Yes No
Observations 124,065 123,518 124,065 123,847 124,065
R? 0.876 0.903 0.878 0.897 0.876

Notes: Standard errors in parentheses. We cluster standard errors at the regional level (NUTS3 level for European
countries, prefecture level for China, and district level for India). Dependent variables in columns (1) to (4) represent
the variance of log MRPK. Results from estimating Equation 13 are displayed in columns (1) to (4), with controls
in column (3) and weighted OLS regression in column (4). Column (5) is the implied TFP loss calculated using

axn+afey (@n=1) {b
2 2

the formula, — , and the regression estimates. Countries included are China, India, and 30

mrpk

European countries.
*p<0.10, " p < 0.05 " p < 0.01
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Figure 2: Estimated impact of daily temperature shocks on annual MRPK dispersion and im-
plied TFEP loss
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Notes: This figure shows the aggregate impact linking annual MRPK dispersion and TFP loss to average daily

2 BTN
temperatures. The formula for computing TFP loss from misallocation is — %’L(”"U)\Zz . The estimation

mrpk

is normalized by setting the range of 5°C - 10°C as the reference category. Therefore, each \’,  represents the
mrpk

estimated effect of an additional day in temperature bin b on annual MRPK dispersion or TFP loss, relative to a
day with temperatures between 5°C - 10°C. The figure also includes the 90% confidence interval for these
estimates where standard errors are clustered at the region level.

aggregate TFP due to capital misallocation, a cost equivalent to 40% of a typical day’s GDP. On
the cold end, we find that an additional day colder than -5°C results in approximately a 0.26
log points increase in annual MRPK dispersion and 0.09% loss in annual TFP.

Robustness. Table 1 columns (2)-(4) present results with different specifications of fixed ef-
fects, inclusions of control variables, and weighting method. We introduce country-sector-year
fixed effects instead of country-year fixed effects in column (2). Column (3) adds the set of con-
trol variables, including total number of observed firms, average firm-level sales, and average
level of MRPK across firms in a region-sector-year (all in logs). Column (4) reports the results
of the weighted OLS using the 1995 region-sector value-added as the regression weight. Our
results, in particular the “U-shaped” pattern, remain robust under various specifications.

4.3 Technology vs. Misallocation

While our main empirical focus is on identifying the causal effect of climate conditions on capi-
tal misallocation, we now turn to estimating how temperature affects the aggregate technology
component of productivity. This allows us to compare the relative importance of technology
versus misallocation channels in the face of climate change.

We interpret the technology effect as the shift in the physical productivity frontier of the

aggregate economy due to climate conditions. Using the decomposition of aggregate TFP from
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Equation (11), we isolate the technology channel:

d Technology,,  dlog TRPE(T,,,-) 1 dlog |EiTFPyi(Try, )7~

dTTt dTnt B On — 1 dTr,t

where TFP,,;(T,+, ) := Bpni(Trs,-) e Api(T, 4, -). This expression quantifies how changes in

T, affect the CES aggregate of firms’ physical productivity.
dlog[E;TFPy,; (T, ¢, )7 1]
dT ¢
firms.?% It can be viewed as a productivity-share-weighted average of individual firm elas-

The semi-elasticity of interest,

,is an “elasticity of the average” across

ticities, where more productive firms with larger market shares have greater influence on the

aggregate response. This contrasts with the “average elasticity” across all firms:

T n—1 _ -~ T "n—
dlog E;[TFP,,;(Ty s, ) 1] g | TP dlog TFPy(Trs )7~ LE, dlog TFP,,; (T, )71
dT,, " | ETRP ] dTre ' dT,
Elasticity of the Average Average Elasticity

A simple OLS estimation, which assigns equal weight to the observations of all firms, would
yield the “average elasticity”, rather than the “elasticity of the average.” This approach could

bias the aggregate estimate downward for heat shocks, as larger, more productive firms are

. - . TFP?% ' dlog TFP,,;(Ty,¢, )7 1
likely more resilient to heat (i.e., cov (Ei TEe T {Tbinz 300

nit

to the practice of using (unweighted) micro-level OLS estimates to infer aggregate impacts.

) > 0). We draw caution

As demonstrated in Tyazhelnikov, Zhou, and Shi (2024), the elasticity of the average, ﬁ
dlog[E;TFPy,; (Ty¢,-)7n 1]
dTr
hood (PPML) regression. Specifically, we impose the following moment conditions:

, can be consistently estimated using a Poisson Pseudo Maximum Likeli-

—~—op—1  ~ ~
Ei [Unl_lTFPnit | T'r‘t> i, log(meYnt)v K’c(r)st] = exp [BTTt + i + J log(PntYnt) + ﬁc(r)st] )
(14)
where we define TFP,,;; := % as the model-consistent empirical measure of TFP

nit ni

from the data, up to a constant consis”ting of the aggregate demand and price index of n. In
this specification, 7); represents firm fixed effects. The term log(P,:Yy¢), along with the country-
sector fixed effect ., 5 ;, captures differences between local and national price levels. Estimat-

1 dlogE;[TFP77 1| ] ]
4

ing this equation by PPML yields a theory-consistent estimate of 8 = E | .~ i

which is plotted alongside the aggregate TFP impact from the misallocation channel in Figure
3.

We find that while the estimated effect of climate shocks through the technology channel is
noticeable, it remains considerably smaller than the effect through the misallocation channel.
Specifically, a cold shock of an additional day below —5°C (relative to the 5°C-10°C range)
results in an annual aggregate physical productivity loss of about 0.03%, and a heat shock
above 25°C or 30°C leads to a loss of approximately 0.02%. The impact of a heat shock on
aggregate technology is roughly one-fifth of the corresponding loss through the misallocation
channel.

20. We slightly abuse the usage of “elasticity” to refer to semi-elasticity for expositional clarity.
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Figure 3: Technology vs. Misallocation
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Notes: The graphs include 90% confidence intervals, and standard errors are clustered at the regional level. The
reference temperature is at 5~10°C.

4.4 Heterogeneous Effect by Climate and Development from Misallocation Chan-
nel

Our benchmark specification in Equation 13 captures the average effect of temperature on cap-
ital misallocation, E[Af‘%rpk]. We now try to estimate the heterogeneous impact of temperature
shocks across regions with different long-run climate conditions and levels of economic devel-
opment.

It is not immediately clear whether a hot day consistently leads to more or less misallocation
in regions that are already warm or economically thriving. This ambiguity arises from two
potentially counteracting factors. For simplicity, consider two types of firms: “heat-loving”
versus “heat-averse.” On one hand, heat-averse firms in warmer climates may have adapted
to high temperatures—by investing in heat-tolerant capital, securing more flexible financing,
or adjusting production methods—such that additional heat shocks impose relatively mild
disruptions on their marginal products and factor usage. On the other hand, heat-averse busi-
nesses in hotter regions might still face disproportionately large adjustment frictions—for ex-
ample, steeper capital-investment costs or financing constraints—once temperatures surpass
their adaptation threshold. Limited adaptability (Moscona and Sastry 2023) and the convex-
ity of damage from cumulative heat exposure (Burke, Hsiang, and Miguel 2015) might still
sharply widen cross-firm differences in marginal products. Similarly, in higher-income re-
gions, while firms may, on average, possess greater resources for adaptation to heat shocks,
these economies often have highly specialized productions and services and exhibit larger
dispersion in firm sizes (e.g., Chen 2022; Poschke 2018). Such heterogeneity can magnify re-
sponses to climate shocks: some firms manage to shield themselves from heat shocks by mak-
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ing quick adjustments while others cannot, causing greater MRPK divergence and reinforcing
the misallocation channel.

To more precisely account for the heterogeneous impact stemming from different long-
run climate and development levels across regions, we follow the approach of Carleton et
al. (2022) and Nath (2023) by interacting a time-invariant measure of climate (i.e., long-run
average temperature) and GDP per capita with each temperature bin. This method allows us
to capture how climate and income jointly influence the effects of temperature variations on
capital misallocation. The modified regression model is formulated as follows:

o2 = Z A’ x Thin?, + Z Al x Tbin?, x T

mrpks,r,t
beB/(5~10°C) bEB/(5N100C)

b - b Yains s Bl v
+ > Abpp,. * Toiny, x InGDPpe, + 63X rt + Qe + Nsr + Es s
bEB/(5~10°0C)

(15)

where T, represents the long-run annual average temperature and In GDPy.  is the log of long-
run average GDP per capita in region r.2! Both long-run temperature and GDP per capita are
computed as sample averages from 1997-2018. The coefficients )\g; and )\bGDPpC quantify how the
impact of temperature shocks on MRPK dispersion varies across regions with different income
levels and climates.??

Figure 4 presents the results from estimating Equation 15. We predict the impact of tem-
perature shocks on MRPK dispersion and its equivalent TFP loss across a combination of three
levels of income and three levels of long-run climate. The left y-axis indicates the projected
effects of temperature shocks on MRPK dispersion, while the right y-axis shows the implied

TFP loss suggested by the estimates.

Level Effect: Hotter Regions Suffer More from the Misallocation Channel Figure 4 shows
that in regions with higher baseline temperatures, an extremely hot day (above 30°C) increases
MRPK dispersion more than it does in cooler areas. Among regions with comparable income
levels, the adverse effects of heat on misallocation intensify as the regional climate becomes
warmer. For instance, when T, = 25°C, an additional day above 30°C leads to a substantial
TFP loss of about 0.3% to 0.58%, irrespective of income. In contrast, in colder climates (e.g.,
T, =~ 5°C), heat shocks have negligible or even negative effects on MRPK dispersion, lowering
TFP losses. Interestingly, even cold shocks (below 0°C) increase misallocation more in hotter
regions than in colder ones, although their overall impact is typically much smaller than that
of a heat shock (above 30°C) —except in certain hot, low-income regions like India (GDP ~
$5,000, T', = 25°C).

The quantitative implications can be best understood by comparing two regions with sim-

ilar incomes but different climates. Arizona (U.S.) and Norway both have an average per

21. The sub-national level (PPP-adjusted) GDP per capita data is from DOSE. It is important to use sub-national
level data as countries like India and China admit large income heterogeneity across the districts or prefectures.
The GDP per capita data is in 2017 International Dollars.

22. Interacting temperature bins with the region’s long-term average temperature allows us to analyze how an
additional hot day has differential effects across areas with varying baseline climates. Similarly, by interacting tem-
perature bins with a country’s annual per capita income, we evaluate how the same heat shock impacts developed
and developing economies differently.

25



Figure 4: MRPK Dispersion and TFP Loss Across Climates and Income
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Notes: The graphs plot the predicted effect of exposure to daily mean temperature bins on MRPK dispersion and
TFP loss at varying levels of income and climates. These predicted effects are derived from the interacted panel
regression specified in Equation 15. The graphs include 90% confidence intervals, and standard errors are
clustered at the regional level. The left y-axis indicates changes in MRPK dispersion, and the right y-axis shows
the calculated TFP loss. The reference temperature is at 5~10°C.

capita income of around $60,000 but vastly different average annual temperatures (14.68°C in
Arizona vs. 0.53°C in Norway). According to our estimates, an additional day above 30°C
compared to a 5—10°C day in Norway reduces MRPK dispersion by 0.41 log points, implying
a 0.14% increase in TFP. In Arizona, the same heat shock increases MRPK dispersion by 0.75 log
points and lowers TFP by 0.27%. In Section 5, we discuss how these divergent responses can
be explained by deviations from the “bliss-point” temperature for production, estimated to be
around 13°C.

Income Effect: Richer Economies Suffer More from the Misallocation Channel A second
key finding is that wealthier economies incur greater losses through the misallocation chan-
nel in response to extreme heat—what we term the Income Effect. Figure 4 illustrates that for
each fixed long-run temperature (each column), moving from lower to higher income levels
amplifies the impact of heat shocks and makes the MRPK response more U-shaped. For in-
stance, the Netherlands and Turkey both have an average temperature of around 9.9°C, yet
the Netherlands’ per capita income ($56,784) is more than double that of Turkey ($28,150). Our
estimates suggest that an additional day above 30°C causes a 0.03% TFP loss in Turkey, but
0.11% in the Netherlands—nearly four times higher. To explain the income effect, in Section 6,
we show how firm size dispersion rises with economic development, potentially resulting in
greater cross-firm MRPK divergence under similar heat shocks.

Overall, the heterogeneous effect shows that the nature of the misallocation channel of cli-

mate change may differ substantially from other channels, such as labor productivity (Nath
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2023) and mortality risk (Carleton et al. 2022), where richer economies and hotter regions are
often found to experience smaller heat-related losses due to long-run adaptation. The opposite
pattern emerges here: hotter and richer regions face larger TFP losses via misallocation, sug-
gesting that market-based adaptation may do little to curb the efficiency losses across firms.??
As an economy develops to be more sophisticated in its techniques of production among firms,
it might become more vulnerable to climate variations since achieving efficient resource allo-

cations becomes more challenging.

Micro Estimates vs. Macro Estimates We compare our micro estimates, derived from firm-
level data and aggregation theory, to macro estimates obtained from country-level aggregate
data. For the micro estimates, we first apply the PPML estimator in Equation (14) with the same
interaction terms used in Equation (15), thereby capturing the heterogeneous effects from the

technology channel on aggregate TFP. We then combine these technology effects with the mis-

dlog TFP,, (Tr¢,-)
dT'rt /

as in Equation 11. For the macro estimates, we use World Bank annual GDP per capita data

allocation effects to form the micro estimates of the total effect of climate shocks,
from 1990 to 2019 for all available countries, running a regression analogous to Equation (15)
at the country level—now controlling for country and year fixed effects.

Figure 5: Aggregate Impact of Climate shocks: Micro vs. Macro Estimates
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Notes: The graphs include 90% confidence intervals, and standard errors are clustered at the region level. The
reference temperature is at 5~10°C.

We plot both sets of estimates in Figure 5 and find that the micro-based estimates closely

23. Interestingly, the average effect of temperature on MRPK also exhibits similar heterogeneity. Estimates can be
found in Figure C.1.
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track the macro-based estimates, except in two instances: (1) the micro estimates understate the
damage of heat shocks (above 30°C) in regions with per capita GDP over $30,000 and mean
temperatures above 25°C, and (2) overstate the benefits of heat shocks in colder, poorer re-
gions. Both types of regions are infrequent in our dataset and globally. Overall, these findings
suggest that our micro estimates capture the same cross-country heterogeneity in temperature

sensitivity as the macro estimates, making them suitable for out-of-sample extrapolation.

4.5 End-of-the-century Projection of the Misallocation Channel

In this subsection, we use the estimates from Section 4.4 to project how climate-induced misal-
location will affect aggregate TFP by the end of the 21st century (2081-2100) for 4,881 regions
in 172 countries.?*

Such projections require detailed region-level daily temperature distributions, average tem-
perature levels, and GDP per capita projections at the end of the century. We use near-surface
air temperature forecasts from the sixth phase of the Coupled Model Intercomparison Project
(CMIP6) (Copernicus Climate Change Service 2021) under RCP 4.5, a scenario featuring mod-
erate mitigation efforts. To project each region’s daily temperature distribution, we calculate
the average number of days in each temperature bin (as defined in Section 4.1) and the mean
annual temperature for 2081-2100, taking a 20-year average to smooth over short-term climate
fluctuations. Following Carleton et al. (2022), we obtain national per capita income projec-
tions from the OECD EnvGrowth model (Dellink et al. 2017) under the SSP3 scenario. For
the average region in our sample, the mean annual temperature is expected to rise by about
1.78°C between 2000-2014 and 2081-2100, while GDP per capita (in 2017 international dollars)
is projected to increase by approximately $20,748 relative to 2019. Figure C.2 illustrates these
projected evolution in income and temperature.

Our objective is to measure how much additional aggregate TFP loss arises from climate-
induced misallocation by the end of the 21st century (EOC), compared to baseline conditions
near the century’s start. To make these mechanisms transparent, we decompose the total effect
of climate-induced misallocation into three components:

2
oKy + o op — 1 _ .
AL I TFP, = = I;n( = ) Z ()\b + /\gDPpc In GDPPC,T,base + /\g“Tr,base> X ATblnle
N——
Total Effect, b
Shock Effect,
s b
+ Z Ap 7 Tbing page X AT
b
Level Effect,
b . b
+>  Mepp, Thin) e X AMGDPpe, |+ n
~—
b Residuals,

Income Effect,

(16)
where A denotes the difference between a variable’s end-of-century (EOC) value and its base-

24. For our 32-country sample, regions are defined as in Section 3. For other countries, we use GADM1-level
administrative units from the GADM dataset.
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line value. The shock effect refers to the change in TFP losses due to shifts in daily temperature
distributions ATbin®, conditional on the baseline income and long-run temperature; the level
effect refers to the change in TFP losses due to the change in long-run temperature AT,; and
the income effect reflects the cost of the region’s increasing misallocation arising from economic
development, proxied by Aln GDP,.,. To render the results more interpretable, we aggregate
each region’s TFP losses to the country level using a weighted sum of projected regional GDP
shares under SSP3.%

Figure 6 displays each country’s projected TFP loss from the capital misallocation channel.
While most countries experience substantial losses, the magnitudes vary widely. Among the
most severely affected are Tanzania, Malaysia, Honduras, and India, where TFP losses exceed
40%. In India, for instance, the number of days above 30°C is projected to increase from 76.24 to
99.78 by 2100, accompanied by rises in average temperature (from 23.29°C to 25°C) and income
per capita (from $6,608.62 to $14,615.39). Combined, these factors yield a TFP loss of roughly
50.45%. As illustrated in Figure 4, such substantial heat-related damages become more pro-
nounced in already-warm (tropical /subtropical), lower-income countries that simultaneously
grow hotter and wealthier.

In contrast, countries like the United States, Argentina, and Spain are projected to lose
20-30%. For example, in the U.S., the TFP loss is about 20.92%. Per capita income is expected
to rise from $62,478 to $95,801, while average annual temperature increases from 10.07°C to
12.45°C, and days above 30°C grow from 3.97 to 8.94. Meanwhile, countries with milder im-
pacts—such as France, the United Kingdom, Russia, and Canada—see losses below 15%. In
the U.K,, for instance, the average temperature climbs from 9.15°C to 10.16°C, with days above
25°C increasing from 0.03 to 0.37, and income per capita rising from $47,362.27 to $85,615.36.
Taken together, these lead to a TFP loss of 8.23%. Although climate change slightly raises aver-
age temperatures in temperate, maritime climates, the incidence of extreme heat remains rela-
tively low, moderating the misallocation losses compared to tropical regions. Figures C.4 and
C.5 provide additional projections under alternative emissions scenarios and uncover similar
effects.

Finally, by weighting each country’s misallocation-induced TFP losses by its projected
share of global GDP2° we estimate the worldwide cost of climate-induced misallocation to
be:

AMSSInTEP = Shock Effect + Level Effect + Income Effect + Resid. .
Total Effect=36.73% 2.13% 11.34% 19.46% 3.8%

25. Grid-level SSP3 GDP data from Wang and Sun (2022) provides projected GDP shares.

26. Under this weighting scheme, the resulting TFP losses correspond to a model-implied global TFP loss based
on a Cobb-Douglas aggregator of country-level value added. This also serves as a first-order approximation under
any constant-returns-to-scale aggregator for global output.

29



Figure 6: End-of-century Projected TFP Loss Due to the Misallocation Channel
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Notes: Figure shows the projected TFP losses from capital misallocation under SSP3-4.5 scenarios. The estimation
follows Equation 16 where we estimate the total effect in MRPK dispersion and compute the equivalent value of
TFP losses.

Figure 7: Projected Global TFP Loss and Its Decomposition: 2030-2100
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Notes: Figure 7a plots the total TFP loss across years. The dark red line plots the estimates and the shaded area is
90% confidence intervals from the parameter uncertainty. Figure 7b plots the three effects contributing to total TFP
loss. All computations are under the SSP3-4.5 scenario and the percentage loss is compared to the baseline level.

Relative to baseline conditions, this translates into a 36.73% decline in aggregate TFP (GDP).
Specifically, shifts in the daily temperature distribution (shock effect) contribute 2.13%, rising av-
erage temperature (level effect) accounts for 11.34%, and higher income per capita (income effect)
explains 19.46%. Figure 7a depicts the projected evolution of misallocation-driven TFP losses
from 7.60% in 2030 to 41.62% by 2100, with 90% confidence intervals accounting for parame-
ter uncertainty. Figure 7b further separates these losses into the three components over time,
highlighting the dominant roles of the level and income effects.

These estimates are substantial and comparable to the overall projected impacts reported
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by Burke, Hsiang, and Miguel (2015) and, more recently, Bilal and Kéanzig (2024). Much of the
total projected effect arises from the sharp increase in the marginal effect of daily temperature
shocks, driven by rising temperatures and incomes. As with any century-scale forecast, our
projection is subject to various caveats—most notably out-of-sample extrapolation—since in-
come and temperature levels by the end of the century lie well beyond historical experience.
However, even if we only adjust the daily temperature distribution while keeping the first-
order marginal effect of temperature shocks at current levels, we still project a 2.14% global
TFP loss from misallocation.””” Overall, these results underscore the quantitative importance
of the misallocation channel of climate change, which may serve as a one of the key forces

driving up the social cost of carbon.

5 A Firm Dynamics Model of Temperature Shocks and MRPK Dis-

persion

We now turn to the question of why and examine how both temperature shocks and levels affect
capital misallocation within a standard dynamic investment model. Given the time-to-build
nature of capital inputs, a natural explanation is that temperature influences firms” ability to
forecast capital returns in heterogeneous ways. We highlight two mechanisms: (i) weather
forecasts are noisy and firms vary in their temperature sensitivity, leading to heterogeneous
investment mistakes from a common forecast error, and (ii) firms do not have perfect foresight
about their damage sensitivity, so temperature extremes can cause large, unexpected losses for
certain firms. These sources of heterogeneity generate misallocation within each region-sector.
Our model provides empirically testable regression equations and rich quantitative insights,
which we present in Sections 6 and 7.

5.1 Setup

Similar to the accounting framework in Section 2, our model describes the action of firms and
the aggregate economy within a region-sector n = (r, s). We suppress the region-sector label
to avoid notation burdens. Our model follows a partial equilibrium set-up similar to that of
David and Zeke (2021).

Production and Demand. We begin by describing the production side of the economy. Each
firm i produces a differentiated product of quantity Y;; with Cobb-Douglas technology, Y;; =
flitht‘K NgN , where A;; is the physical productivity, K;; is the capital input, N;; represents
labor and ax + ay = 1. The firm’s product faces a constant elasticity downward-sloping

demand curve, Y;; = B P, °, with demand shifter B;;. Combing production and demand

functions, we obtain the equilibrium revenue function of the form:

PyYy = Ay KJK NG, (17)

27. A detailed breakdown of each effect on the country level is presented in Figure C.3. Country-level misalloca-
tion loss projections under other climate change scenarios are provided in C.4.
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. Lo N\(1-7)
where ap = (1 — %)dp,VF € {K,N}and A;; = B (Ait> is the firm’s revenue-based

productivity (TFPR), which we will simply call “productivity” hereafter.

Productivity and Heterogeneity in Temperature Sensitivity. We now introduce how firms’
productivity is heterogeneously impacted by temperature. For parsimony, we allow the annual
temperature to be a sufficient statistic for climate conditions in the structural model (as in
Dell, Jones, and Olken 2012 and Cruz and Rossi-Hansberg 2023). We assume that firms’ (log)

~

productivity, ;s = In(A;;), is determined by:
aie = Bin(Ty — T*) + 2, (18)

where T; is the realized temperature at year ¢, and 7™ is the optimal temperature for firms’
production. We assume that each firm i’s (log) productivity changes linearly with tempera-
ture’s deviation from the optimum, 7; — T, subject to the sensitivity Bit.% Z;; denotes the
tirm-specific idiosyncratic productivity, which captures all the variations apart from the effect
of temperature.

We allow a firm i’s temperature sensitivity /3;;, to be firm-specific and time-varying. There
are two sources of heterogeneity in a firm’s sensitivity to temperature:

Bu= B + & + O
—~ <~

Persistent  Idiosyncratic
sensitivity  sensitivity

In our model, we distinguish between persistent and idiosyncratic temperature sensitivities. The

persistent sensitivity $3; is assumed to be observable and known to firms, with 3; ~ N(B , 02)
2

B .

On the other hand, the idiosyncratic sensitivity, &: ~ N(0, ag), is unknown to the firm and

across firms. Here, 02 measures the dispersion of persistent sensitivity within a region-sector.?’
i.i.d. across firms and time. Here, ag captures damage uncertainty within a region-sector. The
impact of idiosyncratic sensitivity on TFP scales with 7;—T77, reflecting the increased likelihood
of a firm experiencing extreme events associated with extreme temperature (e.g. plant-level
tire hazards are more likely to happen during heat waves). Finally, O; denotes the adjustment
to offset the Jensen’s inequality terms when aggregating across firms; because it is common to
all firms, it plays no role in cross-firm misallocation.3?

Jointly, we model Bit to reflect the idea that a firm reacts to temperature conditions based on

the firm’s known characteristics.>! Given that dynamic inputs require time to build, firms can-

28. The heterogeneity of 3;; reflects the composite effect of how both physical productivity and demand shifter
are impacted by temperature across firms.

29. 3; can depend on a firm’s products and adaptability. For example, a ski resort facing extreme heat might have
a negative Bz because higher temperatures could hinder snowmaking, whereas a more adaptable firm—offering
hot cider in cold weather and iced lemonade in hot—could have a positive ;. A high Uz might reflect diverse
product offerings in a region-sector, such as in service industries of developed economies.

30. This adjustment is introduced to ensure log-linearity of the aggregate economy in temperature when no
marginal product dispersion exists.

31. One might naturally think that part of 3;; is an endogenous firm choice, but we do not pursue that possibility
here for simplicity. For a more general treatment of how firms might optimally pick their exposure to risk factors,
see Kopytov, Taschereau-Dumouchel, and Xu (2024).
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not fully optimize each period, as some damage sensitivity to temperature remains unknown

at the time of investment.

Law of Motion for Productivity and Temperature. We assume (agents perceive that) tem-
perature and (log) idiosyncratic productivity 2;; = log Z;;>2 follow an AR(p) process, with per-

sistence pr and p., respectively:

p
(Tis1 = T) =Y pra(Tipi-n = T) + i1,
h=1 (19)

Zit41 = P=Zit + Eit+1,

where we assume that temperature oscillates around a local average T'. n/, ; ~ N (0,07) is the
temperature shock. The idiosyncratic productivity shocks ;41 ~ N (0,02) are independent
across firms and time.

At the firm level, uncertainty arises from three sources: 1) idiosyncratic damage sensitivity
£it, 2) aggregate temperature shocks nt,1; and 3) idiosyncratic productivity shocks é;.41. We
assume firms have full information regarding all realized shocks and hold rational expecta-
tions regarding the future states of the economy. We refer to the cross-sectional variance of
unexpected firm-level TFP shocks as TFP volatility, following Asker, Collard-Wexler, and De
Loecker (2014).33TFP volatility in the model depends endogenously on temperature levels 7;
and the temperature shocks 7/ :

Lemma 2 TFP volatility, Var(a; — E¢—1[ay]), can be written as:

Var(ai — Ee-1[an]) = (T — T*)°07 + (i) )03 + oZ. (20)
All else being equal, TFP Volatility is minimized when T; = T™ and the temperature forecast for date ¢

is fully accurate (nf = 0).

This lemma illustrates two climate-related forces that shape TFP volatility. First, TFP volatility
depends on the regional climate: if a region is significantly hotter or colder than 7™, firm-
level productivity becomes too volatile to forecast accurately. We will test this empirically
in Section 7.1. Second, forecast errors in temperature also matter. Even if firms share the
same temperature forecast, their individual forecast errors may vary due to differences in their

persistent sensitivities.

Flexible Inputs and Profits. Firms hire a composite of flexible inputs, “labor”, on a period-
by-period basis at a competitive wage, W;. For simplicity in modeling the temperature-related
supply- and demand-side frictions in the labor market (e.g., temperature-related disutility of
work or temperature-induced loss of labor productivity), we assume the equilibrium wage is
given by:

Wy =Wexp (x(Tt — T7)),

32. We use lower case to denote variables in logs, except for temperature ;.
33. This can also be viewed as a theoretical counterpart to the cross-sectional measures of uncertainty as in Bloom
(2009).

33



where the wage is a function of temperature (deviation from 7™) with constant elasticity x,
indicating the sensitivity of which wages respond to temperature.>*. Optimal choice of flexible
inputs is made after capital inputs are allocated and all shocks are realized. The static input
choice solves

max exp <th (T, — T*)) ZitKgKNgN — WiNj,

Nit

and results in the operating profits I1;,

II;; = GAZtKg = Gexp (th(Tt — T*> + Zz‘t) Kﬁ, (21)
_____an N
where G (= W 1-on ajl\faN (1 —an), zit = ﬁiit, and a = 13‘5}\}. We define capital prof-

itability as Aj; := exp (Bi(T; — T™) + zit), where B = Bu—xay is the sensitivity of capital prof-

l—an
itability to temperature, transformed from the firm’s productivity’s temperature sensitivity,

Bit, and the wage’s temperature sensitivity, . « is the curvature of the profit function.

Dynamic Capital Investment. Capital is a dynamic input that takes time to build. It needs to
be invested one period ahead before all shocks (including temperature) are realized. Naturally,
the investment problem of a firm 7 can be formulated into the Bellman equation of the form:

V(Ty, Zit, Kit) = max Gexp (Bit(Ty = T7) + zit) K — Kir41+ (1 — 0) Ky
it+1
1

+1+r

Ei [V (Tes1, Zitg1, Kit1)]

where ﬁ is the discount factor. Firms are risk-neutral and face no adjustment costs in the

model.**. The optimal investment K;;1 solves the Euler equation:

-1
1= 17 aGKg+1Et [exp (Zit—i-l + /Bit-i—l(Tt-i-l — T*))] + (1 — (5) . (22)
L —~
Discount Factor Expected Value of Marginal Profits of Capital Un depr\éigtingapita !

Equation 22 reveals that a firm’s investment is increasing in the forecast of its capital profitabil-
ity, which depends on expected idiosyncratic productivity z; 11, temperature sensitivity 5; +11,
and future temperature T} ;. Log-linearizing the solution for the firm’s optimal capital choice

34. This assumption is commonly used in business cycle analysis. See Blanchard and Gali (2010), Alves et
al. (2020), and Flynn and Sastry (2023).

35. Our benchmark model abstracts from the presence of adjustment costs in capital investment. If we introduce
an adjustment cost of the form — £ ( %; — 6)? at the time of investment, then the MRPK dispersion in the economy
would take the form:

1

2
*\2 2 T2 2 2 2.2 2 .
m) |:(T'r,t - T ) 057(7‘,5) —+ nr,t JB,(T,S) —+ Us,('r,s)] —+ (Oé — 1) ¢Aak,t—l —+ Ad] COSt Channel(mm,

2
Omrpk,(r,s),t = (

for some constant ¢ 4. The Adj. Cost Channel captures how adjustment costs interact with past and present

(rys),t
climate conditions. It includes terms that are linear in ;. ;, as well as the interactions of past temperature conditions
with n”,. The interaction between adjustment costs and climate conditions operates separately from our main
mechanisms. It is unlikely to affect the identification of the damage volatility channel and climate volatility channel

in the data when additional controls are added.
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and comparing it to the average firm’s investment yields:

1 Bz % - Bi
< t[2i1+1] N Bi — B

1—a\1l—ay 1— oy Et[Tt“_TD' (23)

ki1 — ki1 =
This policy equation shows that the size of a firm’s persistent temperature sensitivity 3; gov-
erns how its investment plan responds to expected heat or cold. For a heat-averse firm with
Bi < E (e.g., a ski resort), a higher temperature forecast E; [T} ]| reduces expected productivity
more than for the average firm, leading to lower capital investment. Conversely, a heat-loving
firm with §; > E (e.g., a water park) invests more than average, owing to its relatively positive

productivity response to anticipated higher temperatures.

MRPK. Once idiosyncratic productivity and temperature conditions are realized, each firm
chooses its labor demand, and production takes place. From Equation 21, the realized (log)
marginal revenue product of capital of firm i can be written as, mrpki = ai + (o — 1)ki +
log(axG).2° By substituting in the capital policy k;; as a function of previous expectations, we
derive how mrpk;; depends on the realized shocks:

Proposition 3 A firm with higher unexpected change in productivity exhibit a higher MRPK relative
to the average level:

mrpk;y — mrpk;; = T

! N{ (Bi—E)UtT +fit(Tt—T*)+éit},

Unexpected Unexpected (24)
Temperature Shock Damage
on Productivity Sensitivity

where the relative MRPK of heat-averse firms (3; < E) will decrease with a positive temperature shock
ni; while the relative MRPK of heat-loving firms (8; > [3;) will increase with a positive temperature
shock.

Proof. See Appendix E.3. m

Equation 24 implies that, if productivity were perfectly known at the time of investment,
all firms would have identical MRPKs ex post. Otherwise, the MRPK would increase with
forecast error of (revenue) productivity.

This highlights the model’s key mechanism. In a region-sector facing a positive tempera-
ture shock 1/ > 0, low-MRPK firms are those that are either (1) heat-averse (Bi < E) such that
the productivity suffers unexpectedly more than an average firm, or (2) unexpectedly dam-
aged with idiosyncratic sensitivity satisfying &;(T; — T*) < 0. In hindsight, these firms over-
invested based on overly optimistic productivity forecasts, leaving their capital underutilized
compared to firms that are heat-loving (3; > E) or those that experienced less idiosyncratic
damage (£;;(T; — T*) > 0). This cross-firm disparity in realized returns leads directly to misal-
location of capital, which is summarized by the following proposition, where we add back the
notation for a region-sector pair n = (r, s):

= _ o oy . . . =
36. G =W T-*Nay °V is the constant associated with the revenue function P;;Y;; = G A K.
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Proposition 4 Within a region-sector pair n = (r, s), the mrpk dispersion across firms is increasing
in TFP Volatility, Var(anit — E¢—1[anit]), and can be decomposed into:

1 \? ) X
O irph,(r3).t = (1 — aN) Var(Gnit — E¢—1[anit])

()

Within n = (r, s), mrpk dispersion is increasing in:

(25)

*\2 2 T2 2 2
(Tr,t -T ) Ué’(ns) + (nr,t) 0'37(,4,8) +Ué,(r,$)

Level Effect Forecast Error Effect

(1) squared deviation from optimal temperature, (T, — T*)?,
(2) squared (unexpected) temperature shocks (n;, t)Q.

Proposition 4 shows that MRPK dispersion scales with the dispersion of unexpected pro-
ductivity shocks. As TFP volatility rises, so does the dispersion of the investment mistakes

across firms. Temperature variations contribute to this misallocation via two channels:

(1) Level Effect. The level of temperature affects misallocation by raising the volatility of id-
iosyncratic damages across firms. As the temperature deviates more from the “bliss point”
T*, becoming too hot or too cold, firms who receive extreme realizations of the idiosyncratic
damage sensitivity £;; will experience larger unforeseen losses (e.g., a larger fraction of firms
will experience severe factory fire). As a result, extreme returns become more prevalent, and

aggregate misallocation grows with (7. ++1 — T*)?.

(2) Forecast Error Effect. The forecast error of temperature raises capital misallocation by in-
teracting with firms’ dispersion of persistent sensitivities in the region-sector. A larger unex-
pected temperature shock (e.g., a sudden heatwave) makes heat-averse firms’ returns unex-
pectedly low and heat-loving firms” returns unexpectedly high—amplifying capital misalloca-
tion. The reverse occurs under an unanticipated cold shock. Consequently, MRPK dispersion
increases with the squared forecast error, (nTT t)2.

These two effects help explain why a region-sector’s geography and climate patterns may
influence capital misallocation, as shown in Figure 4 in Section 4. Regions exposed to extreme
climates—either too hot or too cold—or to unexpected temperature shocks are prone to higher
levels of capital misallocation. Moreover, it helps us rationalize why shifting toward hotter
climates is detrimental to the TFP of already hot regions (7,; > 1) but beneficial to colder
ones (T, < T%).

Equation (25) further predicts that, at a fixed climate, a region-sector’s average misallo-

cation depends on the distribution of firms” weather-related characteristics. Specifically, a
2

B7(s7r)
suffers more from climate-induced misallocation. This framework also sheds

region-sector with larger dispersion in persistent sensitivity o
2

. &) e . . .
light on the income effect identified in Section 4.4, namely why developed countries may incur

or higher damage uncer-

tainty o

greater losses from climate shocks. Although such economies often benefit from greater “heat

preparedness” (higher g(w)), they may also exhibit wider dispersion in o2 or o2

B7(S7T) 57(877")’
ing to broader specialization and greater product variety. Developed countries also feature a

ow-
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larger spread of firm sizes (Poschke 2018), implying wider variation in temperature sensitivi-
ties, as bigger firms typically hold more resources to buffer sudden climate shocks. While we
do not explicitly model this latter point, Section 6 empirically explores how firm size can serve
as a proxy for temperature sensitivity.

TFP Loss from Misallocation. Finally, we formalize how temperature-induced misallocation
affects region-sector aggregate TFP in the model. In the Appendix, we show that under a CES
aggregator,® the economy admits an aggregate production function of the form:

Ynt = Qnt + g knt + N,

where the cost of misallocation can be expressed as the deviation from the level of TFP, a;,

when MRPKSs are equalized across firms:

* p—
Ant — Qpg = — O mrpk,nt

ag + 6&%2((0 — 1) 9 (26)

This formula is reminiscent of Equation 7 in the accounting framework and shows that the

intuitions behind the cost of misallocation are similar in the firm dynamics model.

6 Firm-level Evidence: Heterogeneous Sensitivity, Temperature Shocks,
and MRPK Divergence

Our model builds on the assumption that firms respond heterogeneously to extreme temper-
ature shocks. In this section, we identify two sources of firm temperature sensitivity Bit and
show how such differing levels of sensitivity lead to heterogeneous responses of MRPK under
heat shocks.3® Since directly measuring each firm’s Bit for each firm is challenging, we instead
explore two potential major factors leading to this heterogeneity: firm size and adaptability
(notably, the use of air conditioning, or AC). We examine whether firms of different sizes and
adaptability levels (with AC vs. without AC) exhibit distinct MRPK responses to identical
temperature shocks. Our choice of firm size and AC installation as proxies for temperature
sensitivity is guided by prior empirical work. Regarding size, studies (e.g., Ponticelli, Xu, and
Zeume 2023) show that larger firms are less sensitive to temperature shocks and more adapt-
able than smaller firms, implying a higher Bir. Concerning AC, Somanathan et al. (2021) finds
that hot days suppress output at plants without climate-control facilities, whereas plants with
AC remain unaffected.

We test whether identical heat shocks within a region-sector lead to heterogeneous MRPK
responses for firms with different levels of temperature sensitivity. In line with the model’s

key prediction from Equation 24, a more heat-averse firm (i.e. lower ;) would see a lower-

37. Following Midrigan and Xu (2014), in a partial equilibrium context, one can define aggregate production and
misallocation by considering the problem of a planner with a CES aggregator and faces no restrictions on how to
reallocate inputs across firms.

38. This also serves to identify climate-induced misallocation directly using firm-level regression, without assum-
ing log-normality.
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than-average MRPK from an unexpected heat shock, as its productivity is more affected, thus
reducing capital returns.

B; and MRPK: Empirical Implementation We run the following regression, an empirical
counterpart to Equation 24, to see if our two heat-sensitivity proxy variables—firm size and

AC installation—result in different (log) MRPK responses to temperature shocks:

log(MRPK,..;)) = > X x Thin,
beB/{5—10°C}
+ Z Ay 3-proxy % Tbin,.; x A-proxy};® + 6X;, (27)

beB/{5—10°C}

+ 0i + Qg o)t T Es e(r) it B-proxy’® € {Relative Size};” |, ACI*}.

Here, r represents the region, s the sector, i the firm, and ¢ the year. B—proxy;’S is a firm-level
proxy for B;, given by either Relative Size};” | or AC;° . We include firm fixed effects 7;, re-
moving time-invariant firm-level heterogeneity, and country-sector-year fixed effects a () ; to
capture aggregate fluctuations in the same region-sector. Our coefficients of interest, A, Boproxy
are identified by comparing how larger vs. smaller firms (or AC-equipped vs. non-AC-
equipped firms) respond differently to the same temperature shock within a given country-
sector. For instance, if A\, < 0, a positive )\b7 B-proxy indicates that high—Bi firms suffer a smaller
MRPK decline than low-g; firms under the same shock.

Heterogeneous Effect of Temperature Shocks from Firm Size. Following Bau and Matray
(2023), we characterize a firm’s size based on its lagged book value of capital. We measure
a firm’s relative size using Relative Size};" ; = log K;;"; — E}"[log K;;—1], which compares a
firm’s lagged (log) capital stock log K;"; to the cross-sectional average of log capital across
firms in the same region-sector-year, E’"" [log K;;_1]. We then standardize Relative Size};” over
the entire sample. Figure 8a shows the differential impact of temperature shocks on MRPK
across firms of varying sizes, A relative Size, fOr €ach temperature bin b. Larger firms tend to
experience higher MRPK in response to temperature extremes than smaller firms. Specifically,
between two firms differing in size by one standard deviation, an extra day above 30°C or
below -5°C (relative to a day in the 10-15°C range) incurs less decline in the MRPK of the
larger firm by around 0.1%. Detailed results of the estimation are presented in Table D.2.
These findings imply that difference in firm sizes is a potential source of j3; heterogeneity
and larger firms appear more heat-tolerant. Moreover, in Figure 9, we document higher dis-
persion in firm sizes in more developed economies, consistent with Poschke (2018). This larger
size dispersion could translate to a larger spread in temperature sensitivities across firms and
exacerbating capital misallocation, which help us rationalize the wealth effect in Figure 4, where

we recover stronger increase in misallocation from extreme heat in wealthier economies.

Heterogeneous Effect of Temperature Shocks from Adaptability. Another source of j3; het-
erogeneity could be the firm’s ability to cope with temperature extremes. Firms with better
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Figure 8: Effects of daily temperature shocks on log MRPK for firms of different sizes and
adaptability

(a) Heterogeneous Effect from Firm Size (b) Heterogeneous Effect from Firm Adaptability (AC)

9% Change in MRPK
9% Change in MRPK

; , ; : ; ;
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One Day in Degree Celsius Bin One Day in Degree Celsius Bin

Notes: Graph plots the effects of daily mean temperature bins on firm-level log MRPK. Figure 8a plots the
interaction terms of relative firm size and temperature bins. Each point measures the estimated effect on a large
firm relative to a firm that is 1 SD smaller. We include firm and country-sector-year fixed effects. Figure 8b plots
the estimated effect on firms with and without AC separately. We include firm and sector-year fixed effects (since
AC data only covers the India ASI sample). Standard errors are clustered at the regional level. Shaded areas
indicate a 90% confidence interval.

adaptation measures should be more resilient to heat shocks, implying a higher 3;. We mea-
sure adaptability via the installation of computerized air conditioning (AC) systems, a variable
collected annually in the Indian Annual Survey of Industries (ASI) since 2001. Therefore, our
analysis for this part focuses on the sample from the Indian ASL

We run Equation 27 with -proxy;” = AC:’, a dummy variable indicating whether the
firm reports having AC.* Figure 8b depicts, A, AC-equipped, the impact of temperature shocks
on MRPK for AC-equipped firms relative to non-AC firms for each temperature bin b. We
find that cold shocks produce little difference in MRPK between the two groups, but heat
shocks lead to significantly smaller MRPK declines for AC-equipped firms compared to the
non-AC ones. Our findings reveal that cold temperature shocks creates a negligible difference
in MRPK between AC-equipped and non-AC firms. However, heat shocks lead to significantly
less decline inn MRPK for AC-equipped firms compared to non-AC firms. For example, an ad-
ditional day with temperatures above 30°C (relative to a day of 15°C-20°C) raises the MRPK of
AC-equipped firms by about 0.2% relative to firms without AC. Detailed results are presented
in Table D.3.40

39. A firm is defined as AC-equipped if it has reported the installation of AC at least once during the sample
period.

40. Our baseline specification in Column 3 analyzes the within-firm variation on the effect of AC installation by
including firm fixed effects §; and sector-year fixed effects 6., and we include the AC indicator variable AC};"
and capital stock In K;; as controls. However, installing air conditioning is a common adaptation strategy for firms
to cope with extreme heat, but it also makes them subject to costs of adaptive investment (e.g. Somanathan et
al. 2021), which means the investment of AC itself could change the firm’s MRPK as well. Following the approach
of Asker, Collard-Wexler, and De Loecker (2014), we address this in our alternative specification in Column (3)
by conditioning on current capital stock to make sure that we are comparing two firms making the same capital
decision, but one firm has AC while the other does not. We include sector-year fixed effects in all specifications,
such that A, and Ay ac are identified based on the comparison of across-firm differences caused by AC installation
within each sector-year.
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Figure 9: Firm Size Dispersion and GDP per Capita
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Notes: The graph presents the bin-scatter plots illustrating the relationship between firm size dispersion (measured
as the variance of log fixed assets across firms) and annual GDP per capita at the region-sector-year level.

7 Quantifying the Causes and Consequences of Climate-Induced Mis-

allocation

In this section, we empirically identify the two effects driving climate-driven misallocation:
(1) the level effect increasing damage volatility, and (2) the forecast error effect that amplifies
cross-firm investment mistakes, as suggested by the model in Equation 25, and then quantify
its aggregate consequences in global economic development over the past 40 years.

We first test the level effect by empirically estimating how the temperature level nonlin-
early shifts the TFP volatility and MRPK dispersion in the cross-section of firms. From this
exercise, we can also identify an optimal temperature of roughly 13°C, consistent with Burke,
Hsiang, and Miguel (2015). Next, we provide direct evidence of the forecast error effect by
using mid-range weather forecast data from ECMWF and show that mean squared forecast
errors of monthly temperature contribute to MRPK dispersion. Finally, we use these estimates
to explore the critical role of the misallocation channel in accounting for cross- and within-

country productivity variations, growth, and global income inequality.

7.1 Level Effect: Temperature and TFP Damage Volatility

Our theory suggests that MRPK dispersion is proportional to TFP volatility, which in turn
depends nonlinearly on the level of temperature 7, ;. As the temperature deviates from the
optimal level T*—either becoming too hot or too cold—the likelihood of firm-level extreme
events rises. Therefore, local temperature’s deviation from 7™ increases TFP volatility across
tirms. We now test this relationship in the data and estimate the optimal temperature 7.

As it is difficult to directly measure unexpected TFP shocks (Gt — Et—1[anit]) precisely due
to possible mis-specifications of the law of motion of productivity and agents” information set,
we adopt the approach of Asker, Collard-Wexler, and De Loecker (2014), and use the variance
of “first-differenced” TFP shocks, Var,. s)t(&it — Gj¢—1), which approximates the TFP Vola’cility.41

41. TFP can alternatively be derived as the conventional Solow residuals including labor. However, as noted
in David and Venkateswaran (2019), footnote 22, TFP calculated from the Solow residual approach can no longer
be directly tied to capital profitability in the presence of labor distortions, while the model-based measure of TFP
remains a valid proxy for capital profitability.
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Inspired by Equation E.1, we identify the nonlinear impact of temperature on TFP volatility
from the following reduced-form specification:

Var(, o) (@it — @it—1) = o+ BF (Trp) + Nsr + Oc(r)t + Esrts (28)

where f(T;) is a polynomial of annual average temperature. 7, and d.; denote region-
sector and country-year fixed effects, respectively. We include only region-sector-year obser-
vations with at least 15 recurrent firms in the estimation.*?> The estimation results are reported
in Columns (1)-(3) of Table 2.

Table 2: TFP Volatility and Temperature Levels

(1) 1st Order (2) 2nd Order (3) 3rd Order (4) Model-Induced

Ty -0.005319 -0.023121*** -0.012380
(0.004573) (0.007536) (0.008537)
T? 0.000841*** -0.000447
(0.000303) (0.000679)
T3 0.000040**
(0.000018)
(T2, + T2 1) -0.021556***
(0.005682)
(T +Tr—1) 0.000882***
(0.000216)
(AT, 4+)? -0.003604
(0.002233)
Estimated 7™ 13.75°C 14.64°C 12.22°C
(3.067678) (2.173182) (2.216646)
Region-Sector FE Yes Yes Yes Yes
Country-Year FE Yes Yes Yes Yes
Observations 113,765 113,765 113,765 113,765
R? 0.754 0.754 0.754 0.754

Notes: Standard errors in parentheses. We cluster standard errors at the regional level (NUTS3 level for
European countries, prefecture-level for China, and district-level administrative divisions for India).
*p<0.10, " p < 0.05, " p < 0.01

Column (1) reports the estimate of the linear effects of temperature, which is negative and
not statistically significant. However, including second- and third-order terms reveals a clear
nonlinear U-shaped pattern that aligns with our theoretical model. Column (2) shows that
the quadratic temperature term is statistically significant and economically meaningful: a 1
°C increase in the annual average temperature in a location with an average of 5°C will lead
to a decrease of 2.9 log points in TFP volatility; however, the same 1 °C increase from a 20°C
place will increase the TFP volatility by 2.5 log points. These effects are quantitatively large,
especially in the context of global warming projections.*> The cubic specification in column

42. This is to reduce measurement errors from the observations that aggregate statistics with only a few numbers
of firms. The measured TFP volatility is winsorized at the top 1 percent level to avoid outliers.

43. To illustrate, let us consider a simple back-of-the-envelope calculation using parameters from our model. Take,
for example, a permanent increase from 16 °C to 20 °C, which aligns with an RCP 8.5 climate scenario projected
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(3) suggests some asymmetry, where a positive 1°C shock can cause more damage in warmer
climates than benefits in cooler ones. Figure 10 illustrates the U-shaped relationship between
temperature and volatility by presenting a binscatter of the two variables after residualizing

all relevant fixed effects.

Figure 10: TFP Volatility and Annual Temperature
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Notes: The graph plots a binned scatter of TFP Volatility against annual temperature. The variation shown is
derived from residuals after controlling for region-sector fixed effects and country-year fixed effects. The blue
dashed line indicates the identified optimal temperature, 7" = 12.22°C.

Interpreting these estimates through our model, a positive temperature shock in a colder
environment will move the economy closer to the optimal temperature 7™, reducing the harm-
ful dispersion of extreme events caused by idiosyncratic temperature sensitivity &;. In con-
trast, the same positive shock in a hotter climate drives the economy further away from 7,

increasing the damage volatility.** Next, we will identify 7.

Identifying the Optimal Temperature 7*. While the reduced-form polynomials are intu-
itive, they may omit how past temperatures affect the lagged TFP a;;—;. To address this, we

derive the exact model-consistent expression for first-differenced volatility:
Vary (@i — aie—1) = 03 (17 + T2 y) = 2057 (T + Tim) + 203772 + 03 (AT;)? + 04,
and estimate the model-induced specification:
Var(g ) ¢ (Git—@it—1) = a""ﬂl(Trz,t—i—TrZ,tfl)—i_BQ (T +Tr 1) +Y(AT ) >+ +0c(r),t TEsrty (29)

where AT,.; = T, —T,;—1. Column (4) of Table 2 shows the estimates from the model-induced

regression are very comparable to the quadratic specification in Column (2). By applying the

for Southern Spain (World Bank Climate Change Knowledge Portal 2023). According to our model’s damage uncer-
tainty mechanism, this 4 °C increase would increase TFP Volatility by 4.24 log points. This increment translates
into a 12.31 log points increase in MRPK dispersion using Equation 25. Subsequently, under standard elasticity
assumptions, this dispersion translates into a 7.6% loss in TFP.

44. This temperature-volatility relationship, as depicted in our reduced-form estimate in Figure 10, also clarifies
why the same hot temperature shock in cooler climates leads to a decrease in MRPK dispersion while producing
an opposite effect in hotter climates as estimated in Equation 15 and depicted in Figure 4.
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Delta Method to the estimated coefficients, we find 7% = —% = 12.22°C (SE: 2.21°C). The
reduced-form specifications yield 7* = 13.75°C and 7™ = 14.64°C for the quadratic and cu-
bic specifications, respectively. Across specifications, estimates align closely with those found
by Burke, Hsiang, and Miguel (2015), who also found that country-level productivity or GDP
peaks at the “bliss point” 13°C. Our findings corroborate the literature by suggesting an ad-
ditional mechanism: temperature levels contribute to aggregate MRPK dispersion and TFP

(output) loss as a volatility shock.

7.2 Forecast Error Effect: Temperature Forecast Errors and Misallocation

We now identify how temperature forecast errors cause misallocation. Rather than relying
on proxies from statistical models, we directly use mid-range temperature forecasts from the
ECMWF (Copernicus Climate Change Service and Climate Data Store 2018). Extensive re-
search shows that accurate daily and seasonal temperature forecasts significantly affect adap-
tation behaviors (e.g., Shrader 2023) and mortality (Shrader, Bakkensen, and Lemoine 2023),
as agents base their decisions on these signals. We similarly assume firms incorporate monthly
weather forecasts into their planning or at least process related information.

Since MRPK is reported annually while the ECMWEF’s mid-range temperature forecast is
released every month, we create a yearly mean-squared forecast error (MSFE) measure. Let
us denote the realized average temperature in the region r at month m and year ¢ as T}, ¢
and the month-ahead ECMWEF temperature forecast as E,,_1[T}, :]. We construct a measure
of mean squared forecast errors, MSFE, , ;, for each time frame ¢ in year ¢, where we let ¢ €

{summer, winter, annual},

1 9

MSFEsummer,r,t = 6 Z (Tm,r,t - Emfl[Tm,r,t] - Biasm,r)Qa
m=4
1 —
MSFEwinter,r,t = 6 Z (Tm,r,t - Em—l[Tm,r,t] - Blasm,r)27
m={1,2,3,10,11,12}
1 12 .
MSFEannual,r,t = E Z (Tm,r,t - Emfl[Tm,r,t] - Biasm,r)2'

m=1

where B/i;sm,r is a region-month fixed effect capturing historical forecast biases over 40 years.
We split the year into two seasons: “summer” (April-September) and “winter” (October-March),
reflecting how temperature forecast errors in warmer vs. colder months may affect MRPK dif-
ferently. We also remove lia\smr to reduce mechanical differences in temperature measure-
ments due to the positioning of the weather stations and forecasting methods.

Equation 25 suggests that a larger squared forecast error in a region-sector would lead to
more capital misallocation. We therefore estimate the following regression:

U?nrpk,(s,?‘),t - Z Hq ’ MSFEq”mt + Z ’Yl’qTqJ‘t + Z 72’qTqQ»r7t + 77877’ + 5C(T)7t + Es,’!’,t7 (30)
q q q

where 6, measures how a one-unit increase in MSFE for time frame ¢ affects annual capital

misallocation. We include the linear and quadratic terms of realized temperatures in Equation
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25 to ensure that identification of 6, stems from information (forecast errors) rather than realized
weather extremes.

Table 3 presents the results. Columns (1)—(2) show that annual MSFE (averaged over all
months) significantly increases MRPK dispersion, even after controlling for the level effect of
realized temperatures. Figure 11 illustrates the variations in Column (2) using a binscatter
of MRPK dispersion against annual MSFE after residualizing the relevant temperature con-
trols and fixed effects. Consistent with theoretical predictions, the graph reveals a monotonic
pattern and indicates that misallocation is minimized when forecast errors approach zero.
Columns (3) and (4) display the estimates using “seasonal” MSFEs from both summer and
winter. We find that an MSFE increase in summer is at least twice as costly as in winter, sug-
gesting that unexpected temperature shocks during warmer months are more damaging. Win-
ter forecast errors become insignificant upon controlling for realized temperature.

The estimates in column (2) can be interpreted in the following way: a 1°C increase in
the temperature forecast errors in all months would lead to a 1.6 log point increase in MRPK
dispersion, compared to a perfect information counterfactual, equivalent to an approximate
0.58% of annual aggregate TFP loss. Obtained from a small deviation from a perfect infor-
mation state, this number should be interpreted as a lower bound of the aggregate cost of
temperature forecast errors.*> Moreover, with an average MSFE,nnyal,r+ Of 1.39 in our sample,
the average cost of forecast errors is around 0.81% of TFP. Our findings suggest that tempera-
ture forecast errors are costly: unexpected temperature shocks lead to dispersion in investment
mistakes among firms due to their varying sensitivity to heat. In sum, the value of temperature
forecasts is highlighted through a new channel in our context: accurate forecast increases the

allocative efficiency of capital.

Figure 11: MRPK Dispersion and Annual MSFE
2.48+
2.46+

2.44+

var(mrpk)

2.42+

2.4+ °

2.381, X X
0 2 4 6
Annual MSFE of Monthly Temperature

Notes: The graph plots a binned scatter of MRPK dispersion against the annual MSFE. The variation shown is
derived from residuals after controlling for quadratic temperature terms, region-sector fixed effects, and country-
year fixed effects.

~ -2
45. 0.58% is obtained by using the calibrated structural parameter, — %K(”_l) = 0.359.
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Table 3: Temperature Forecast Errors and MRPK Dispersion

1) (2) (3) (4)
MSFE nnual,r ¢ 0.019114***  0.016249**
(0.006675)  (0.006561)
MSFEsummer,r,t 0.014908**  0.016592**
(0.007115)  (0.007084)
MSFEinter,r ¢ 0.008536™  0.006096
(0.004017)  (0.003882)
Quadratic Temperature Control No Yes No Yes
Region-Sector FE Yes Yes Yes Yes
Country-Year FE Yes Yes Yes Yes
Observations 124,065 124,065 124,065 124,065
R? 0.876 0.876 0.876 0.876

Notes: Standard errors in parentheses. We cluster standard errors at the regional level (NUTS3 level for
European countries, prefecture-level for China, and district-levels for India).
*p<0.10, " p < 0.05, " p < 0.01

7.3 Quantitative Exploration of the Model: Economic Development since 1981

Having established the empirical relevance of both channels in the data, we now revisit a
classic question in development economics: how much do temperature conditions affect pro-
ductivity and income inequality through the lens of the misallocation channel?

We calibrate the strength of these two channels using a model-induced regression derived
directly from Equation (25), assuming a uniform across-firm dispersion of temperature sensi-

tivities in all regions:
U?m"pk,(s,r),t = K1 (TT,t - T*)2 + RQTA]Z:E + sy + be(r)t + Esrts (31)

where (T}.; — T*)? is the squared deviation of annual temperature from the estimated op-
timum 7% = 12.22°C, and At 2 (the squared unexpected temperature shocks) is measured by
the annual mean squared forecast error MSFE,nya1 ¢ in the data.

Table 4 reports the coefficients 1 and k2. Using Column (1) (our preferred specifiCQation)

2
o5 ~
and referencing Equation (25), we recover og = m = k1 ~ 0.0023, and ag = ﬁ =
ko ~ 0.015, which represent the empirical averages of the two sensitivity dispersions in our

sample.

7.3.1 The Cost of Climate-Induced Misallocation

We first measure the total cost of climate-driven misallocation in our model. Precisely, we
define this cost as the aggregate productivity (or output) loss when comparing observed states
of the world to a counterfactual in which all within-region dispersion in climate sensitivities is
removed (07 = 0 and 0 = 0).

To operationalize the exercise, we pair our estimates with gridded climate data (ERA5)
and weather forecast data (ECMWFE) for all countries worldwide, partitioning the globe into
roughly 4,000 regions. For China, India, and EU countries, we use the same regional definitions
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Table 4: Model-induced Regressions: Calibrating the Sensitivity Dispersions

(1) (2)
(Typ — T*)? 0.0045***  0.0042***
(0.0008)  (0.0007)
MSEFE,.; 0.0120**  0.0124**
(0.0055)  (0.0052)
Region-Sector FE Yes Yes
Country-Year FE Yes No
Country-Sector-Year FE No Yes
Observations 121,561 121,004
R? 0.876 0.909

Notes: Standard errors in parentheses. We cluster standard
errors at the region level (NUTS 3 level for European coun-
tries, province level for China, and first-level administrative
divisions for India).

*p<0.10, " p < 0.05, " p < 0.01

as in our empirical analysis; for other regions, we adopt GADM level-1 partitions.

We treat the global economy under a Cobb-Douglas aggregator of country-level outputs
log YGIOba11 > wet log Yoy, where wy is each country’s output share. Within each country c,
we similarly write log Yer = 3, ¢ g() wry 10g Y7, where wy, is the share of region r’s output in
country ¢’s total output. This implies an aggregate global production function® and hence a
global TFP:

log TEPF'P = ", log TFP,..
T

where w,; = wawy,. Under this setup, the global cost of climate-induced misallocation from the
two channels corresponds to output-weighted deviations from optimal temperature, ) . wy¢ (T —
T*)2, and from forecast errors, >, wreMSFE,, scaled by our estimated sensitivity dispersions.
Formally,

. G +a% (o —1)
ATMis |og TFPGlobal — _ =K 12< [ (Zwrt v = T)?)

~—8.9%

Level Effect

~—8.34%

+02 (Z wre(MSFE,) )

Forecast Error Effect
~—0.56%

Averaging these two sufficient statistics over 1981-2019, we find that climate-induced misal-
location costs the global economy about 8.9% of TFP. Of this total, 8.34% arises from the level
effect, whereas 0.56% derives from the forecast error effect. Notably, the contribution of the level
effect is substantially larger than that of the forecast error effect, suggesting that most climate-

induced misallocation arises from persistent deviations of regional climates from the optimal

46. This remains valid regardless of inter-regional factor mobility.
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temperature rather than from unpredictability of weather fluctuations in the short-run.

7.3.2 The Changing Cost: Global Warming and Weather Forecast Improvement

We then examine the changing costs of climate-induced misallocation using the evolution of

regional temperature and weather forecasts from ¢y = 1981 to ¢; = 2019:

UgAt,to (Z wrt(Tr,t - T*)2>

A Level Effect

~—2.66%

+ 03 A ( > wrtMSFEt> ] :

A Forecast Error Effect
~+0.17%

5o =2
ATMis g TRpGlobal _ _ CK F 0‘12((“ —D

—2.49%

(32)

We plot the evolution of the global costs of misallocation induced by the two effects in Figure
14a. Altogether, they reduce global TFP by 2.49% from 1981 to 2019. Not surprisingly, the pri-
mary driver of this significant increase in costs is global warming, which moves hotter regions
further away from the optimal temperature more than it brings cooler regions closer. Not sur-
prisingly, the main driver of this large increase in costs is global warming, which pushes more
hotter regions further away from the optimal temperature than the cooler regions it brings
closer. This rise in the level effect makes firm-level productivity more volatile and reduces
investment efficiency in the global economy, lowering TFP (and thus the average return to
capital) by 2.66% after four decades of warming. In contrast, improvements in global weather
forecasts have actually enhanced allocative efficiency, raising global TFP by 0.17%. Using a 10-
year moving average filter to extract trends from short-term weather fluctuations, the benefits

of forecast improvement is about 0.20%. Both time series are plotted in Figure 14b.

Figure 12: The Changing Cost of Climate-Induced Misallocation
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Although the aggregate gains from improved forecast accuracy appears small relative to
the level effect, they remain substantial in absolute terms. To the best of our knowledge, our
paper is the first study to provide a quantitative evaluation of the improvements in global

weather forecasts over the past four decades. These estimates can be directly compared with
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the costs of weather information services. For example, Georgeson, Maslin, and Poessinouw
(2017) measures that the investment cost of weather information services amount to around
0.08% of global GDP in recent years, but we estimate that it can yield at least 0.2% in benefits.*’
This implies a benefit—cost ratio of exceeding 2. Our analysis implies that improving weather
forecasts is a promising and effective route for climate adaptation, corroborating the argument

by Shrader (2023), although it cannot fully compensate for losses due to a warming climate.

7.3.3 How much does climate matter for productivity differences and growth across coun-
tries? Macro Data vs. Model Estimates

We use our framework to revisit a central question in economic development: what explains
the large productivity differences among countries? Geography and climate have long been
recognized as influential factors in comparative development (Montesquieu 1748; Sachs and
Warner 1997; Gallup, Sachs, and Mellinger 1999; Nordhaus 2006; Dell, Jones, and Olken 2012),
yet direct quantitative evidence on the underlying mechanisms is often limited. Here, we
re-examine this question through the misallocation channel and show how our model, when
combined with micro-level estimates and granular weather data, can explain a significant por-
tion of observed macroeconomic development patterns.

We match our model-generated country-year estimates with country-level TFP data from
the Penn World Table (PWT) 10.01 (Feenstra, Inklaar, and Timmer 2015). Our first goal is to
gauge the extent to which cross-country productivity differences can be attributed to climate,
as captured by climate-induced misallocation in our model. Specifically, we compare the mea-
sured TFP gap relative to the United States (In TFP.; — In TFPys ;) with the model-predicted
climate misallocation cost relative to the United States (ATMilog TFP,; — ATMis 1og TFPyg ;)
each year. The United States, often regarded as the global productivity frontier, is also geo-
graphically close to the estimated optimal temperature (7™ ~ 12°C), facing relatively minimal
climate-induced misallocation—an “allocational frontier,” in effect.

Figure 13a depicts a binned scatter plot of macro data against model-generated micro esti-
mates, both demeaned by year fixed effects to remove average global convergence trends. A
titted regression line yields a slope coefficient near 1, which signals the quantitative success
of our simple model: if a country’s predicted TFP distance to the U.S. owing to climate mis-
allocation rises by 1%, its actual measured TFP distance, on average, also increases by about
1%. This indicates that climate-induced misallocation contributes to cross-country productiv-
ity differences in a manner largely orthogonal to other potential drivers. An R? of 0.089 implies
that about 9% of measured TFP differences can be explained by climate via the misallocation
channel. Notably, the model results are derived solely from micro-data estimates and granular
regional temperature and forecast information, yet they match the macro data reasonably well.

Next, we compare measured TFP variations within a country against changes in misallo-
cation cost due to recent climate changes in the model. Figure 13b shows that our model also
tracks the within-country patterns well, with a fitted slope of around 3. This suggests other

47. Our estimate is a conservative lower bound since (1) we do not consider mortality costs, only production
costs, and (2) the 1981 estimates serve as a lower bound; the cost of having no weather forecasts at all is unknown
but must be lower than the 1981 baseline.
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Figure 13: Macro Data vs. Model Estimates

(a) Across-country TFP Dispersion (b) Within-country TFP Variation
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Notes: Values in Panel (a) is demeaned by the year fixed effect to remove average TFP convergence. Values in Panel
(b) is demeaned by the country and year fixed effect.

omitted factors may correlate with climate-induced across-firm misallocation (for example,
perhaps due to the spatial misallocation across regions that we do not explicitly model). The
fact that both fitted slopes in Figures 13a and 13b exceed 1 also demonstrates the lower-bound
nature of our results.

Finally, we explore how increasing climate-induced misallocation affects global TFP growth
over time. We calculate actual cumulative global TFP growth (relative to 1981) from the PWT,
along with a counterfactual path where the global cost of climate-induced misallocation re-
mains at its 1981 level. Our results show that the global TFP would be approximately 3%
higher in the PWT sample if there were no increases in the costs of climate misallocation. Since
cumulative global TFP growth from 1981 to 2019 is only about 13.5 percentage points, this

equates to a 23% increase in cumulative growth.

Figure 14: Climate Change and Global Aggregate TFP Growth
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In summary, our findings highlight that climate-induced misallocation accounts for a siz-
able portion of cross-country productivity differences and global growth trends. By empha-
sizing the role of geography and climate in shaping misallocation patterns, these results offer
a fresh perspective on the long-standing question of why some nations are more productive

than others.
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7.3.4 Climate and Global Income Inequality

We then assess the impact of climate on global income inequality. Widespread evidence of
income convergence trends has been documented in the literature (see, for example, Barro and
Sala-i-Martin 1991; Barro 2015). To measure income inequality, we follow Gaubert et al. (2021)
by adopting a population-weighted, between-country variance of per capita income:

2
VGlobalt = Z sk, (ln GDPpc,, — Z sk In GDPpCTt> (33)

L

where s;;

is region 7’s share of the global population. This index also approximates the welfare-
theoretic inequality measure proposed by Bourguignon (1979). Using World Bank data on
GDP per capita and UN population statistics, we construct Vgiopar + for the period 1981-2019.
Figure 15a shows a consistent pattern of global income convergence since 1981: the variance

of per capita income dropped by half, from about 2.09 in 1981 to 0.83 in 2019.

Figure 15: Climate-Induced Misallocation and Global Income Dispersion

(a) Actual vs. Counterfactual Income Dispersion (b) Contribution to Total Global Income Dispersion
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We then ask: What role does the misallocation channel play in global income dispersion? To
address this, we compute a counterfactual GDP per capita In(GDPpc, ;) that excludes climate-

induced misallocation:
InGDPpc,, = InGDPpc, , — A"M1og TFP,.,.

Using these counterfactual values, we construct a counterfactual inequality index VGlObaLt by
applying Equation (33). The green line in Figure 15a plots X7G10ba17t, revealing that, in every year,
income inequality would have been lower without cross-country climate differences. More-
over, the dispersion induced by climate grows over time, causing observed inequality to fall
more slowly compared to the counterfactual scenario without climate misallocation. Thus, we
identify climate-induced misallocation as a potentially significant factor slowing global income
convergence. According to our estimates, climate-induced misallocation accounts for a rising

share of global income dispersion, from about 3% in 1981 to 14% in 2019.
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8 Policies to Manage Climate-Induced Misallocation

Our results shed new light on the design and effectiveness of climate mitigation and adap-
tation policies. We discuss three types of policies that could potentially reduce the cost of
climate-induced misallocation: (1) reducing the end-of-century temperature rise from 4°C to
2°C; (2) improving mid-range weather forecast accuracy; and (3) reducing climate sensitivity

heterogeneity across firms.

8.1 Mitigating Global Warming: RCP 7.0 vs. RCP 2.6

The most important policy to mitigate the cost of the misallocation channel is to address cli-
mate change itself. To illustrate this, we compare the projected misallocation losses between a
stringent policy scenario (RCP 2.6) and a business-as-usual scenario (RCP 7.0). RCP 7.0 repre-
sents a baseline outcome with limited additional climate policies in place, resulting in a pro-
jected 4°C global warming by 2100. In contrast, the RCP 2.6 pathway aligns with the Paris

Agreement goals and aims to limit global warming below 2°C.

Figure 16: The Cost and Benefit of Mitigation

(a) TFP Loss from Misallocation: RCP 2.6 vs. RCP 7.0 (b) The Cost and Benefit of RCP 2.6
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Notes: In Figure 16a, the climate projection data is collected from CMIP6, and the income projection data are from
the SSP database. In Figure 16b, the blue line with dot markers represents the difference in TFP losses between the
RCP 2.6 and RCP 7.0 scenarios, referred to as the avoided TFP loss or benefit. This is the difference between the
two lines in Figure 16a. The orange line with triangle markers shows the estimated cost of mitigation, calculated
using the results from DICE-2016R, defined as the percentage difference in post-abatement potential output
between the optimal policy scenario to achieve less than 2°C warming (consistent with RCP 2.6) and the baseline
scenario with 4°C warming (consistent with RCP 7.0)

Our objective is to compare TFP losses between these two scenarios to assess the effective-
ness of mitigation policies in avoiding misallocation losses. Using the approach developed in
Section 4.5, we compute the projected TFP losses from the misallocation channel for the two
scenarios, as shown in Figure 16a. By the end of the century, TFP losses are projected to be ap-
proximately 21% under RCP 2.6, compared to 43% under RCP 7.0. This suggests that a global
TFP loss of 22% can be avoided by achieving the Paris Agreement goals.

Using existing estimates from the DICE-2016R model (Nordhaus 2017), we also calculate
the potential costs of switching from RCP 7.0 to RCP 2.6 and compare them to our projected
benefits. We define the cost of mitigation as the percentage difference in post-abatement poten-

51



tial output between the optimal policy scenario to achieve less than 2°C warming (consistent
with RCP 2.6) and the baseline scenario with 4°C warming (consistent with RCP 7.0). Figure
16b shows that the estimated GDP cost of mitigation is moderate; it initially increases over
time, peaks at 8% around 2065, and then decreases to less than 2% by 2100. More importantly,
while the annual costs closely track the annual benefits from avoided misallocation loss by
2060, the benefits significantly outweigh the policy costs afterward, amounting to a 20% lead
by 2100. Therefore, we argue that mitigation policy is extremely beneficial to avoid losses from
climate-induced misallocation. Additionally, regardless of the choice of the discount factor, the

cost of such a policy is always justified by the large estimated benefits.

8.2 Improving Mid-Range Weather Forecast Accuracy

Our model suggests that lowering mid-range weather forecast errors (i.e., reducing o72) would
alleviate capital misallocation. Improvements in medium-range weather forecasting at current
rates could yield an additional 0.3% gain in aggregate TFP by the end of the century. Moreover,
Georgeson, Maslin, and Poessinouw (2017) highlight cross-country disparities in the quality of
weather forecast services. Subsidies and international collaboration could play a crucial role in
enabling developing nations to access high-quality weather forecasts, especially those already
bearing the brunt of climate change.

Our analysis also points to a potential benefit—cost ratio of more than 2 in recent years,
suggesting that further investment in weather forecasting capacity could serve as a vital adap-
tation strategy. By improving investment efficiency and enhancing overall productivity, better
weather forecasts offer a tangible path to strengthening economic resilience in a changing cli-

mate.

8.3 Reducing “Climate Inequality” Across Firms

The differential response of MRPK to shocks stems from the heterogeneity in temperature sen-
sitivity (cr% and ag) across firms. We also point out that this “climate inequality” among firms
could result from various factors, including size-related distortions and adaptability. There-
fore, policies should be targeted to identify and subsidize firms that are productive but lack
the resources to defend against heat. These policies could include targeted subsidies or credit
policies for air conditioning installations and other risk control practices. By harmonizing cli-
mate sensitivity among firms, the MRPK dispersion will be less responsive to heat shocks or
a warming climate. Interestingly, our results also highlight that there need not be an equity-
efficiency trade-off in the context of heterogeneous firms. If more firms become more “equal”
in their sensitivity to temperature, the aggregate efficiency in the economy will also increase.

We will leave quantitative explorations of optimal firm-level policies for future research.

9 Conclusion

This paper provides the first causal estimates of the misallocation effect from temperature
shocks using firm-level microdata from 32 countries. On average, an additional hot day with >
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30°C of temperature increases MRPK dispersion by 0.31 log points and contributes to a 0.11%
decline in annual aggregate TFP. Intriguingly, the detrimental impact of extreme heat on capital
misallocation is more severe in regions with hotter climates and higher incomes, highlighting
a significant productivity cost of climate change coupled with a limited capacity for market-
based adaptation. Using projected temperature and income data, we find that global warming,
under the SSP3-4.5 scenario, could lead to an aggregate TFP loss of 36.73%. By writing down
a firm dynamics model with heterogeneous temperature sensitivity, we use model-implied re-
gressions to explain the differential effects among regions: regions with extreme climates and
lower temperature forecast accuracy will have larger unexpected volatility in firm-level TFP
and investment mistakes. Overall, our results suggest that firm-level heterogeneity matters for
the aggregate effect of climate change. This paper suggests an important venue for research in
understanding the impact of climate change in a distorted economy.

We conclude with a final suggestion for future research. First, the identified misalloca-
tion effect is highly heterogeneous across different geographical locations, implying a different
level of TFP losses across regions and sectors globally. This will lead to shifts in comparative
advantage and triggers the change in global trade patterns in the long-run. Moreover, as we
only focus on the misallocation effect within a region sector as a lower-bound estimate of the
climate-induced misallocation, one could also study the misallocation that arises between sec-
tors, regions, and even countries. On the empirical side, it would be important to understand
whether demand-side or supply-side factors function as the main drivers of climate-induced
misallocation. We leave these questions for future research.
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Online Appendix

A Additional Derivations for Section 2

This appendix provides the derivation of the expressions and propositions featured in Section
2.

A.1 Equilibrium Allocations in Distorted Equilibrium

In this appendix, we solve the firm’s profit maximization problem in Equation 4 and derive
Equation 5.

Subject to the inverse demand and wedges, each firm 7 in region-sector n engages in mo-
nopolistic competition and optimally chooses its quantity of inputs and price to maximize
profits

max (1= 7y) Prit Anit KoE" Lk — (1+ 7)) BB e — (14 7si) Wt Linae

nit nit
Pnit 7Kn7lt 7Ln7lt
Ynit

Pt "
subject to : Yyt = Bit Y [;t] .
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After substituting the demand curve P,,;; Y, = PntYnf Bﬁ Y,,;" into the objective function,

we derive the first-order condition with respect to any factor input F},;: used (where F,,;; can
be either K,;; or L)
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MRPF, = ap,

where Pl denotes the factor price, specifically W,,; for labor and R,; for capital. "g—;l is the
optimal CES markup. This is Equation 5 in the main text.
Next, we will derive the allocation in the distorted equilibrium. We rewrite the demand

curve as L
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Combining with Equation 5 yields
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We can rewrite the previous equation as
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and combining with
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we can derive an expression for F,;; as
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where I' € {K, L}. Substituting this expression into the production function of firm i for each
factor I yields
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Similarly, we can write the sales of firm i as
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Then the sales share of firm 7 in region-sector n, 6,;:, can be expressed in closed form of the
fundamentals as:
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Finally, by combining 35 and 38, we derive the equilibrium allocation of factors in the distorted

economy as

1 9 .
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where 1+ T}; = ( fOJ” ﬁ&mtdi is a measure of aggregate factor distortion. Mathemat-
nit

ically, it is a sales-weighted harmonic mean of all firm-level distortions of input F. Equation 39
states that a firm would use more of input F if it faces smaller distortion than the region-sector
aggregate distortion. Moreover, a firm with a larger equilibrium sales share, 6;;, is, loosely

speaking, more productive and less distorted in production, and will thus use more inputs.
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A.2 Proof of Proposition 1

Proposition 1. Equilibrium (Mis)Allocation. The (log) ratio of firm ¢’s distorted and efficient
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* 7
Fnit

equilibrium allocation of factor,

F ot 1 + 9mt
log( T):—log( mt)—i—lo ()
F, nit 1+ ’7'71; amt
relative wedge size
effect effect

is decreasing in the ratio of firm i’s own factor wedge comparing to the aggregate factor wedge

-1
1+7L = ( fo " 1+1F)0m-tdi> , and increasing in the ratio of the firm’s sales share 0,
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productivity within the region-sector and aligns with sales share 0 ...

is entirely determined by firm i’s relative preference shifter and physmal

Proof. Substituting the expression of 6;; from 38 into 39 yields an explicit expression of %ﬁf in
terms of micro fundamentals
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where it is more transparent that for factor F' € {K, L}, any increase in input distortion has
two effects on the equilibrium allocation: (1) it brings down the sales share of the firm in the
economy, limiting the usage of all inputs, and (2) it brings up the cost of the specific factor F.

We can evaluate this expression at the efficient equilibrium (quantities and prices in the
efficient allocations are marked with *) where all distortions are eliminated and get
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To obtain a more intuitive expression , we use equation 35 to get
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where we used the fact that 71 = 0 and 7/;* = 0 in the efficient equilibrium. Writing this in

logs yields the desired expression,
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A.3 Proof of Proposition 2

Proposition 2. Aggregation and TFP Decomposition. Under the log-normality assumption,

each region-sector n admits an aggregate production function of the form

Yoi = TEP, Ko Lok

nt >

where the region-sectoral ageregate Total Factor Productivity TFP,,; := TFP,, Trt,Xnt can
g gereg Yy

be decomposed as follows:
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Proof. Using 35, we can derive an expression for the equilibrium aggregate factor demand F),;
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Using 37 and the fact that f PpitYnirdi = PpiYn:, we can derive the aggregate price index as

re= () () (G2
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Substituting this back into equation 42 and taking logs to both sides yields
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Under the assumption that B, Anit , 1 + 71, and 1 + 7L, follow a joint log-normal dis-

tribution, and all firm-level fundamentals {Bmt, Apit, T%Et, Tﬂt} to be firm-specific and smooth

functions of (’i‘m, )~(m, th), expanding all the terms in 44 yields
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which is the Equation 9 in the text.
u

B Data Sources and Variable Construction

This appendix provides details on data sources and variable constructions.
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B.1 Orbis Data

Our data of firms from the European countries comes from the Orbis historical Disk Product.
We use the sample period 1995-2018 for our analysis. We detail the cleaning process below.

Sample Cleaning. Following the procedure of Kalemli- Ozcan et al. (2024), we link multiple
vintages of Orbis products over time and link the firm’s descriptive information with its fi-
nancial information via the unique BVD firm identifier (BVDID). We then apply the following

standard cleaning procedure:

1. We restrict our analysis to firms that satisfy the following criteria: the country they reside
in from their latest address matches with their ISO codes in their BVDID identifier. For
example, if the firm’s ISO-2 code in BVDID is FR while its latest address is in Spain, then
we exclude this firm from our sample.

2. For some firms that lack address information but have other identifiers such as post-

codes, we manually map the postcodes to NUTS3 for each country.

3. We harmonize each firm’s fiscal year with the calendar year based on the closing date:
if the closing date is on or after July 1st, we use the current year as the calendar year;

otherwise, we use the previous year.

4. Firms may report multiple sales figures from different sources (like local registries, an-
nual reports, etc.) for consolidated or unconsolidated accounts. Following Fan (2024),
we use the unconsolidated accounts to avoid double-counting that can occur with con-
solidated accounts.

5. We only keep firms with non-missing and positive sales (operating_revenue_turnover)
and fixed assets (fixed_assets).

6. We calculate firm-level MRPK;; for firm i in year ¢ as log MRPK;; = log(ak U”—_lw)

noon Kt

where P;;Y;;: is measured with sales and Kj; is measured with fixed assets.

7. We winsorize the observations of MRPK;;, fixed assets, or sales at the top and bottom
0.1% of the distribution in the entire panel for each country. This is to prevent outliers

from affecting the variance calculation and estimation.

B.2 China NBS Data

The annual firm-level data for China is derived from surveys conducted by the National Bu-
reau of Statistics (NBS) in China. We only use the sample period of 1998-2007 due to inconsis-
tent reporting after 2008 as discussed in Brandt, Van Biesebroeck, and Zhang (2014) and Nath
(2023).
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Sample Cleaning. To process the NBS data, we follow the methodology outlined in Zhang
et al. (2018). We measure sales using the variable " /i ¥4 & WL \” (product sales revenue)
and capital using the variable ”[& & % = & 11" (total fixed assets). Each firm in the dataset is
categorized using a four-digit Chinese Industry Classification (CIC) code and is harmonized to
the USSIC division level. Each firm’s reported location can be mapped into a prefecture-level

division. The rest of the cleaning follows the same procedure as items 5-7 in Appendix B.1.

B.3 India ASI Data

Our data for India are drawn from India’s Annual Survey of Industries (ASI). We use the
sample period of 1998 to 2018.

Sample Cleaning. We match the plants to the Indian districts following the approach of So-
manathan et al. (2021) and harmonize the industries first to the NIC-04 classification, and then
to the SIC division level. We measure sales using the gross sale value of all products and cap-
ital using an average of the opening and closing gross book value of total capital, as in Bils,
Klenow, and Ruane (2021). The rest of the cleaning follows the same procedure as items 5-7 in

Appendix B.1.

B.4 Additional Descriptive Statistics

The table below lists out the countries, year coverage, number of regions in each country, and
the total number of firm-year pair observations in the final sample we used for the empirical

analysis.
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Table B.1: Descriptive Table of Dataset by Country

Dataset Country Coverage Number of Regions Number of Firm-Year Obs
NBS China Industrial China 1998-2007 325 2069100
India ASI India 1998-2017 267 473646
Austria 2004-2018 34 185029

Belgium 1998-2018 44 781322

Bulgaria 1998-2018 28 1439871

Switzerland 2003-2018 3 1701

Cyprus 2005-2018 1 17356

Czech Republic  1998-2018 14 1425901

Germany 1998-2018 346 765981

Denmark 1999-2018 11 392015

Estonia 1998-2018 5 791340

Greece 1998-2018 44 342636

Spain 1998-2018 52 12210663

Finland 1998-2018 19 1909080

France 1998-2018 96 15151185

Croatia 1998-2018 21 1202515

BvD Orbis Hungary 2004-2018 20 3095326
Ireland 2000-2018 8 115344

Italy 1998-2018 107 12083926

Lithuania 1998-2018 10 129442

Luxembourg 1998-2018 1 74287

Latvia 2010-2018 6 533640

Malta 2000-2018 1 21249

Netherlands 1998-2018 36 201182

Norway 1998-2018 12 2462277

Poland 1998-2018 73 1207428

Portugal 1998-2018 24 3882515

Romania 1998-2018 42 4636047

Sweden 1998-2018 21 3934403

Slovenia 1998-2018 12 744495

Slovakia 1998-2018 8 1008353

United Kingdom  1998-2018 178 3537701
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C Additional Figures for Section 4

This appendix provides additional results and figures to complement the main analysis in
Section 4.

C.1 Firm-level MRPK and Temperature

Here we present the average effect of temperature on firm-level MRPK across climates and
income. We show that heat shocks negatively affect firm-level MRPK across almost all climates
and income. As an economy becomes more developed or traditions into a hotter climate, the
negative effect of heat shocks on MRPK becomes larger.

Figure C.1: Average Effect of Temperature on firm-level MRPK Across Climates and Income
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Notes: The graph plots the estimated effect of exposure to daily mean temperature bins on the level of MRPK at
varying levels of income and climates. The regression is at the firm-level with firm and country-year fixed effect.
The graph includes 90% confidence intervals and standard errors are clustered at the regional level. The reference
temperature is at 5-10°C.

C.2 Projected Evolution of Income and Temperature under SSP3-4.5

The figure illustrates the projected evolution of income and average temperature from the
2000-2014 baseline to the end of the century (2081-2100) under the SSP3-4.5 scenarios. Among
the 172 countries, All 172 countries show a rightward shift (indicating an increase in tempera-
ture), and 96% of them also show an upward shift (indicating an increase in per-capita income).
In the baseline period, average temperatures are below 5°C in 11 countries, between 5-15°C in
49 countries, between 15-25°C in 62 countries, and above 25°C in 50 countries. Baseline per

capita income is below $5000 in 41 countries, between $5000-$30000 in 83 countries, between

68



$30000-$60000 in 38 countries and above $60000 in 10 countries. The blue arrow exemplifies
the joint evolution of income and temperature.

Figure C.2: Joint Evolution of Income and Average Temperature from Base Period to End of

Century (under SSP3-4.5)
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Notes: Grey texts represent the baseline period from 2000 to 2014, and the red texts represent the end of the
century (2081 - 2100). End-of-century projection comes from SSP3-4.5 projection. The graph shows the joint
evolution of income per capita and average temperature for each country.

C.3 Projection Components

The graph shows a breakdown of the three effects contributing to the total projected TFP loss
under SSP3-4.5 scenarios in Section 4.5.
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Projected Shock Effect on TFP Loss (%)

Projected Level Effect on TFP Loss (%)

Figure C.3: Three Effects Contribution to Projected TFP Loss (SSP3-4.5)
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C.4 Projections from Other Scenarios

This appendix presents global TFP loss projections by current income levels under different
scenarios. We categorize the countries into four groups based on current GDP per capita
quantiles: below the 25th percentile (less than $5149.8), 25th-50th percentile ($5149.8-$13968.3),
50th-75th percentile ($13968.3-$32776.8), and above the 75th percentile (greater than $32776.8).
The four scenarios considered are SSP2-4.5, SSP3-7.0, SSP3-4.5, and SSP5-8.5.
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Global TFP Loss Projection By Current Income Levels from Other Scenar

Figure C.4
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Global TFP Loss Projection By Current Income Levels from Other Scenar

Figure C.5
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(a) Income at 50% to 75% Percentile
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D Additional Tables for Regressions in Section 6

This appendix reports the estimates in Section 6, corresponding to Figures 8b and 8a.
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Table D.2: Relative Firm Size and Firm MRPK

1) )
< =5°C 0.00056** 0.00046*
(0.00027) (0.00027)
-5~ 0°C 0.00019 0.00012
(0.00016) (0.00015)
0~ 5°C 0.00015 0.00010
(0.00013) (0.00013)
5 ~ 10°C 0.00005 0.00001
(0.00014) (0.00013)
15 ~ 20°C 0.00004 0.00002
(0.00011) (0.00011)
20 ~ 25°C -0.00016 -0.00024
(0.00016) (0.00016)
25 ~ 30°C -0.00019 -0.00028
(0.00024) (0.00024)
> 30°C -0.00119***  -0.00133***
(0.00045) (0.00044)
< —5°C x Relative Size 0.00089***
(0.00019)
—5 ~ 0°C x Relative Size 0.00077***
(0.00024)
0 ~ 5°C x Relative Size 0.00062***
(0.00022)
5 ~ 10°C x Relative Size 0.00041
(0.00027)
15 ~ 20°C x Relative Size 0.00021***
(0.00008)
20 ~ 25°C x Relative Size 0.00092***
(0.00017)
25 ~ 30°C x Relative Size 0.00098***
(0.00031)
> 30°C x Relative Size 0.00105**
(0.00049)
Control: Relative Size Yes Yes
Firm FE Yes Yes
Country-Sector-Year FE Yes Yes
Observations 73350226 73350226
R? 0.880 0.880

Notes: Standard errors in parentheses. We cluster standard errors

at the region level (NUTS3 level for European countries, province

level for China, and first-level administrative divisions for India).

The dependent variables are the log MRPK. These results are ob-

tained by estimating Equation 27. Column 2 presents results that

interact with relative firm size, Relative Size [;’

= log K;;" —

log K " which is standardized over the entire sample.
*p<0.10, " p < 0.05, *** p < 0.01
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Table D.3: AC Installation and Firm MRPK

(1)

(2)

)

(4)

< 10°C 0.00156 0.00124 0.00083 0.00178
(0.00105) (0.00101)  (0.00268) (0.00202)
10 ~ 15°C 0.00032 0.00075 -0.00064 0.00131*
(0.00051) (0.00051)  (0.00085) (0.00075)
20 ~ 25°C -0.00037  -0.00015 -0.00226*** -0.00175***
(0.00027) (0.00024)  (0.00080) (0.00061)
25 ~ 30°C -0.00060* -0.00035 -0.00286*** -0.00245***
(0.00031) (0.00028)  (0.00083) (0.00065)
> 30°C -0.00068* -0.00044 -0.00249**  -0.00224***
(0.00040) (0.00035)  (0.00099) (0.00075)
< 10°C x AC Installation 0.00089 -0.00051
(0.00305) (0.00243)
10 ~ 15°C x AC Installation 0.00110 -0.00062
(0.00095) (0.00085)
15 ~ 20°C x AC Installation 0.00218***  0.00185***
(0.00081) (0.00062)
20 ~ 25°C x AC Installation 0.00259***  0.00240***
(0.00087) (0.00068)
25 ~ 30°C x AC Installation 0.00208**  0.00206***
(0.00102) (0.00077)
Control: InK No Yes No Yes
Firm FE Yes Yes Yes Yes
Sector-Year FE Yes Yes Yes Yes
Observations 532,425 532,425 532,425 532,425
R? 0.748 0.815 0.748 0.815

Notes: Standard errors in parentheses. We cluster standard errors at the districts level. The depen-

dent variables are the log MRPK. These results are obtained by estimating Equation 27. Column 1

and 3 present results that do not include control variables log K.
*p<0.10, " p < 0.05, *** p < 0.01

E Additional Derivations for Section 5

This appendix provides the derivations of the expressions and propositions featured in Section
5.
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E.1 Proof of Lemma?2

Lemma 2. TFP volatility, Var(a; — E¢—1[a]), can be written as:

Var(ai — B law)) = (T, = T*)?0f + (if )?0% + o2.

All else being equal, TFP Volatility is minimized when 7; = 7™ and the temperature forecast
for date t is fully accurate (7] = 0).

Proof. We can write a firm’s (log) TFP, a;;, as

it = Bir(Ty — T*) + Zit

A A R (46)
= (5z’ + & + Ot) (Ty = T%) + p2Zir—1 + Eur-
where O; is defined as
(O’E +02)o
Ot = C(Tt — T*), with ¢ = %
hen the expected TFP, E;_[a;:], can be expressed as
E—1]ait] = BiEt—l[Tt - T+ Et—l[é@'t(Tt — T+ E1[0(Ty — T7)] + p2Zit—1 “7)

= BBy [Ty — T*] + Be 1 [(Ty — T*)?] + p2Zit 1

where we have used that E;_; [éit(Tt — T =Ei [éit]Et,l [(Ty — T™)] = 0. Using Equations 46

and 47, we can write the forecast error of a firm’s TFP as

dir — By _1[aw] = Bint + C((Tt ~T*)? —E, 4 [(Tt - T*)2]> + Ei(Ty — T*) +&4s,
~—_———

from Sensitivity

(48)

from Temperature Forecast Error Forecast Error

where the first term stems from the firm’s forecast error on temperature, the second term repre-
sents the firm’s unexpected sensitivity shock, and the third term represents the firm’s idiosyn-
cratic productivity.

We define TFP Volatility, Var(a;; — E;—1[a;]), to be the cross-sectional variance of the TFP
forecast error across firms. Taking the variance of 48 across ¢ yields

~ ~ * 2
Var(ay — Ev—1[ai]) = (T — T )2052 + 77;[ U% + Ug. (49)

We thus obtain Equation E.1 in the text. m

E.2 Solving the Model

This appendix provides additional derivations for solving the model in Section 5. Specifically,

we will derive the optimal capital investment policy function in Equation 22.
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Flexible Input Choice and Profits. Optimal choice of flexible inputs is made after capital

inputs are allocated and all shocks are realized. The static input choice solves
max P Yy — Wi Ny,
it

where P, Y = A K;;* N~ . Taking the first-order condition of N;; gives

1
apn—1

No= [t )" (50)

AitaNKgK
Plugging in the equilibrium wage, W; = W exp (x(T} — T*)), into this equation yields the op-

timal labor choice )
— e\ ARt

N, = [ Ve (T . ™) . (51)

Aita NK itk

Also, notice that W; Ny = an P;Yit, so the firm’s profits can be written as

Uy = PyYis — WiNi

A (52)
= (1 - OéN)Az‘tKgKNgN,
Plugging in the expression of optimal labor, we obtain
— 12 Tay K Toay
Iy = Gexp (x(T; —T7)) '~ A, "V K, ¥, (53)

9N @
where G = (1—ay)W '"oNvay oy . To simplify notations, we define a firm’s profitability, A,
as .
__ON ~Ma
Ajp = exp (X(Tt - T*)) tmon Ailt N =exp (Bz't(Tt - T*) + Zit);

where z;; = ﬁén, and B; = /B’lf:# is the firm’s profitability sensitivity to temperature.

Therefore, we can write a firm’s revenue function as
II,;; = Gexp (/th(Tt — T*) + Zz't) Kﬁ = GAitKgy

where a = 25— is the curvature of profits. This is Equation 21 in the main text.

Dynamic Capital Investment. We now characterize the firm’s investment problem. The

firm’s dynamic capital investment problem takes the form

V (Tt, Zit7 Kzt) —= max GeXp (5zt(ﬂ - T*) + Zit) Klotl — Kit—‘rl —+ (]. — 5)Kz
it+1
X (54)

1+r

+ E; [V (Ti11, Zit41, Ki+1)] -
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Combining the first order condition and the envelope condition associated with Equation 54

gives the Euler equation

-1
1= 17 OKGKg_,_lEt [exp (Zit+1 + /Bit—i-l(Tt—i—l — T*))] + (1 — 5) . (55)
L —
Discount Factor Expected Value of Marginal Profits of Capital Un. depr\é?:%gteegf Capital

We then rearrange the Euler equation to get the expression for optimal capital investment

—a G
K 5= mEt lexp (@it41)]
A 4 ¢ (56)
aG i+ &itr1 + O — X y
= r+5]Et exp <ﬁ §t+11 — at;l XN (T —T ))

Notice that a first-order approximation of a non-linear function f (Eitg1, Tre1 — T*) around
(E¢[&it], Ee [Ty — T™]), we get:

Fir, Tepr — T%) = f (By[€ivn], Be[Tir — T7))

Af (Eity1, Trp1 — T
+ f%g} tle*) ) (Tyy1 — E4[Ti41])
o (B[St 4 1] Ee[Top1—T*]) (57)
Of (Cisr, Tps1 — T . R
+ UG t+({1) 3 as ) (itr1 — Eg[&iey])-
it (Bt [Eit4 1) Ee[Thp1—T%])
Applying expectation on both sides of this equation yields
Et[f(Gits1, Tepr — T)] = f(Bebirs1, Be[Tig1 — T7)). (58)
Under this first-order approximation, the optimal investment in 56 becomes
1o . oG Bi+ Eybir1 + B0y — xan I
“+1Nr+(5eXp( [ an Et[Tiia T]+1_aN .
Taking logs on both sides yields the policy function
1 (B +Eiivs1 +EOpy1 — xa . Es
Kiti1 = B t&it+1 tYt+1 — X NEt[Tt+1 T ] + t[ t] + ko (59)
11—« 1—ay 1—an

where kg = ﬁ (log [%] > Therefore, Firm i’s investment, relative to the average firm in the

economy at date ¢ + 1, would be:

kit41 — Kit1 = I — o -
—an —ay

: i . (Et[éitm 4 B 5i>Et[<Tt+l - T*>]>'

which is Equation 23 in the main text.
To gain some intuitions, using E[Oy41(Ti41 — T*)] = E¢[Op 1 |E[(Th41 — T7)] + ca%, we can

79



also write Equation 59 as

kity1 = 1 aEt[ait] + k.
(Bl - T2 B - ] ) + K
= a; - Wiy] — W
I —a\T—ay it+1 T —an t+1 0 (60)
1 1 ~ 3 * aNX *
1= <1 “on (E¢[2it11] + Ee[Bit1(Trpr — T)]) — T aNEt[Tt+1 =T ]) + ko,
2
where k{, = ﬁ (log [% — li‘Z’N ) The derivations illustrate the following logic: investment

is proportional to the expected profitability of capital, which is increasing in expected (revenue)
productivity and decreasing in expected wages. These are, in turn, dependent on the firm’s
expectation of future temperature sensitivity and future temperature.

E.3 Proof of Proposition 3

Proposition 3 Firms with higher unexpected changes in productivity exhibit higher MRPK
relative to the average level:

mrpk; — mrpk; =

! N{ (B@-—E)nf ‘|‘é@'t(Tt—T*)+éit}>

1—
o (61)
Unexpected Unexpected
Temperature Shock Damage
on Productivity Sensitivity

where the relative MRPK of heat-averse firms (5; < E) will decrease with a positive temper-
ature shock 7{; while the relative MRPK of heat-loving firms (B; > E) will increase with a
positive temperature shock.

Proof. Recall that Py Yy = Ay K GXNGN and therefore a firm’s MRPK can be written as

OPuYi Py Yi
MRPK;; = = . 62
it aKzt aK Kz ( )
Note that since ax = UT_ld K, this definition of MRPK is consistent with the definition in our
accounting framework (see Equation 5). Using 52, we can write revenue as
I1; GA4KS
PyYy = g— — =~~~
— QN 11—« N
= éAthzot[a
where G = 1— . Plugging this expression in 62 and taking logs to both sides, we obtain
mrpkiy = ay + (o — 1)k + log(axG). (63)
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Plugging in the optimal investment policy k;; from 60 into this expression yields

2

(60}
mrpkis = (air — Bi—1[aq]) + log(r + 0) + T ZéN
1 R R cop
= (@it — Ei—1[ai]) — xan (Ty — By [Th]) p +log(r +0) +
1—an 1—an
1 . . . 64
= Bini +&u(T = T") = xann; +&i ¢ +log(r +9) 9
1-— N N——— R —— N——
Unexpected Unexpected Unexpected
T Shock Damage T Shock
on Productivity Sensitivity on Wage
. (0T — T%) — E4—1[O4Ey 1 [T} — T7))
1—ay '

which made clear that MRPK is just the user cost r + ¢ in the absence of any forecast error.

To calculate the average mrpk across all firms in a given year mrpk;;, we notice that vari-
ables without i subscript will remain the same. And thus, when calculating the difference
between mrpk;; and mrpk;;, those terms will be canceled out. Knowing this, we achieve the
following

mrpk;y — mrpk; = —an

{(Bz‘ — BmF + &u(Ty — T™) + &%t}a

where § =0.
n
E.4 Proof of Proposition 4

Proposition 4 Within a region-sector pair n = (r, s), the mrpk dispersion across firms is in-
creasing in TFP Volatility, Var(an; — E;—1[ani]), and can be decomposed into:

1 \%. )
O arph(ros)t = <1 — aN> Var(anit — E¢—1[anit])

2
1 *\2 2 T2 2 2 (65)
= (1 - aN) (Tt =T7) 0 syt Mt Tprs)  T0%,(rs)
Damage Volatility Climate Uncertainty
(Level Effect) (Shock Effect)

Within n = (r, s), mrpk dispersion is increasing in:
(1) squared deviation from optimal temperature, (T;.++1 — T*)?,
(2) squared (unexpected) temperature shocks n,,T7 tz‘

Proof. From the proof above for Proposition 3, we know that

mrpk;; =

<&z~t —FEiy_y [dit]> -+ constant terms
1—oapn
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We can then compute the variance and obtain the following equation:

1 \?. R
O b (r.5) = <1 - aN) Var(anit — Er—1[anat])

2
1 *\2 2 T2 2 2 (66)
::(1__QN> (Tt =T") "¢ (rs) T Tt Tp,(rs)  TOE(r9) |-
Damage Uncertainty Climate Uncertainty
Channel Channel

Note that we have obtained Var(a;; — E;—1]ai]) = (T3 — T*)zog +nf 202 + 02 from Equation 49.

E.5 Derivation of TFP Loss from Misallocation

This appendix provides the derivation for Equation 26. We now aggregate firm-level produc-
tion and productivity to the aggregate region-sector level. Labor market clearing implies

1

Apan K meN
Mz/mmz/ _ AN Bt di
Wexp(x(T; — T*)

1 —
11—« ~ N
:( aN ) N/lﬁmk di.
Wexp(x(Ty — T*)

Then we solve for M RPK;; through the revenue function.

— A QK NTON
Pz'tyvit - AitKit Nit

7 exp (x(T: —T*)))“Tf

= Ay KX = =
AitaNKitk

Note that from the labor market clearing condition, we can get the following equation

_ 1
(WeXp(X(Tt —T*))> Nt Ni
anN . T-ay '
f<AZ-tK§K) di

We plug this back into the revenue function and get

anN
P el i s o N
PitY;t = AitKit (AitKit )17&1\7 1

~ 11—«
f(AﬁkgK> N di

1 anN
~ a l—an I\
= <A’LtKrLtK> . ( t i >
l—apn

(f(A“KﬁK> di

(67)
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From this, we can solve for M RPK;;. Note that M RPK;; = « KP;(i—z?’f =« KA”KT Plug-

ging in the expression of revenue function, we get

~ 11—«
| (AitK§K> N di

N o
MRPK; = agAl” “NK‘) 1 ( i ) :

— K
where ) = 2£

it

AN
6

We now use the capital market clearing condition

K = /K,-tdz'
ON

1
:041719- Ni 19/ Azlti ﬁdi
K ﬁ MRPK;;

[ <Ath;§K) di

Rearrange terms we can have

N, -0 B K,
~ ok 17}11\, ) B 1%6 A_lfiw ﬁ )
/ (Aitht ) di ag’ [ (Ml}f?,PKit) di

We can plug this equation to the expression for K,

AN TN RPKL X

fA1 T "MRPK1 "dz

We now have solved for N;;, K;; all in terms of M RPK;; and aggregate variables V; and K;.
We plug N;;, K;; back into Equation 67 and get

% N an
PyYiy = (AitK3K> i ( A >
~ l—«
I (AitKi‘:K> N di

1 1 —0

AN T MRPKE?
1

-0 aN R 1 =1
( AL~ T OMRPKl 9dz> < [A; N 19MRPKZ;9di>

K \NTON
KKt Nt
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o—1
Using P Yy = th th 7 , we can write aggregate output as

o1 E=s
}/t B Y L7 dl = PZtY;tdl
it it
E=s
[A N T QMRPKl 7 di ax % ansSg
_ K STNY
1— aNl 9 1 99 o l—aN 1—9 % . K
[A, MRPK,,~*di [ A, MRPK,;,~°di
= AT
(68)
JALoN o T eMRPKl =0 4 o
where we define A; := - — - We take logs to Ay and get
<fA1 NI M RPK] 9dz>

PR 6 L1 1

1
where A;; = A, “V . Now, assuming log-normality, the first term is equal to

oL _0 1 — 0 ———
log (/ Al MRPK,, 1“’) =1_g%t 1= gmrpkit

1/ 1\, 1/ 6\, 0
Tol\1=g) ettty {1y Umrpk,t—mamrpk@t

The second term is equal to

. - 0 — 0
0 log </A21t "MRPK,,' 9> =1 g%t~ 1_9mrpk'it

1 \*, 1 1\, 0
79 <1 — 9> U&,t + 59 (1 — 9> Umrpk,t - mamrpk,&,t

Combining them together, we have the following equation for aggregate productivity

- 1 1 1 6
a; = (1 —ap) [at + 770 2t 21_9072nrpk,t:|

Using Equation 68, we write the log aggregate output as

o . - -
yr = ar + gk + anng
oc—1

o 1 1 1 6 . -
— (1—-an) [at T 21_9072mpk’t] + agk + anng

oc—1 9“

= ay + agky + anng,
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where the total factor productivity is defined as

o — 1 1 1 a
at =7 (1—-an) ait+§1_a0&,t— 37 o 0mpkit
c — 1 o 1
LA o2,
o—1 20-1(1—a) (1l —ay) @

1 g aK 2
T 95 11— g mmkt

Finally, we plug in the definition for a;; and o2 ,, and we can write the TFP as

a,t’

g S * *
ant:; Bz‘(Tt—T)-f—C(Tt—T)Q
+2_ 7 o —I—a (T T*)Q—i—ai62 (69)
201\ 5 b 1—p2
ag +ax(o—-1)( 1 \? \ 2
- ) R (T; = T*)*0f +nf 0% +0?

Under the parametrization that c = —§ (aé + 0?) , we will have

a; =a; — Misallocation Loss;

o ~ O'
= (T, — T g
—p| T G [1—pz] (70)
_agta a5 (0 —1) 2 X T2 2 2
2 1—aN (Te =T o+ o) + 0
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E.6 General Solution of the Firm’s Investment Problem

This Appendix outlines the general solution of the firm’s investment problem without using
the first-order approximation method in Section 5. We will discuss why our first-order approx-
imation is valid for both the theoretical analysis and the empirical identification of key model
parameters.
We rearrange the Euler equation in equation 22 to get the expression for optimal capital
o oG

K Zmth [exp (ait)]

(I—apn) (1—ap)? (1—ap

oG 1, f‘
Cr+64d

(szz't—l Ug )
l—an 2(1—aN)2

N B v o) 202 o2
Crxeng, (ry-re BXON T e @y (BT >2<Et1[<Tt—T*>1>2>

(71)

o2 9y . . .
whered =1— 21i—a" — ——£_ Notice that the risk-adjusted terms are small (as shown by our
N (I-an)

estimation), so empirically we have that d ~ 1.

2.2

Taking logs on both sides yields the investment decision:

b =i (N B (0= T 4 =S Gl = T+ ey (B (T3 = )2

(1-a)d\ (1-ap)

1 (B — xan)?o? 1 1,
B (1 —an)? + I~ 4 (pzzitfl + 505) +

(1 — OdN)
aG
(r+6)Vd

log( )

1l -«

2

_ 1 coy 1 % an2 4 18— xan)®o)

= (g (Bl = T Bl T+
1 1 aG

+ L(p Zit—1 + 702) + log(
1—aV*™ Y l-a (r+6)vVd

).

The mrpk of a firm can be then expressed as:

_ 2 2
mrpky =8 (LT - 1) 4 (@ B[]+ P
L (Ou(T = T7) = By [On] By [T — T7))

1—aN

+&t(Th —T7%) + it

(73)

We now take variance of both sides of the mrpk expression and use the fact that for a standard
normal variable x ~ N(u, 02), Var(Az + Bx?) = (A + 2Bu)%0? + 2p20. A few lines of algebra
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d—1 o1 ol _ i}
e :<T(Tt =T+ (L - E[T]) + 7) o} +2B%% + (T, — T*)%0¢ + o
d—1)2 . 1 . d— )
:%0[23 (T, —T*)* + 70% (Tt ~E[T])* + o (T — T*)? o3 (T, — T (T,
d d d
(d—1)o202p o2 2ﬁ

Lastly, notice that since d ~ 1, as our empirical results suggest, the above expression can be

approximated as:

1 2
2 2T 2 #\2
o — %7(1 v (aént + aé(Tt —T") 4o

20 TU (5 XON) . 5 020;‘; 2(5 xan)?o é
+ (1—aN) T T T (= an)t

g5
where we have used that ag = ﬁ, o2 = )2 Notice that apart from the risk-adjusted

(1-«
terms in the second line, the first line of th1s equation yields exactly Equation 25 in the main
text.

We now discuss in detail why the risk-adjusted terms in the second line do not affect our

analysis. First, regarding the identification of O‘E and o2

i in the regression specification of

T 0'2 (5*XQN)
(1—an)
ni ~ N(0, af}T). Even if we use the monthly aggregated index, MSFE,nya1 .t = Z}f ok t2 ,

Equation 31, the linear term n{ does not affect the identification of 02, given that

as an empirical counterpart for n} ? the forecast error of any month remains uncorrelated with
MSFEnnual,r¢ as long as 1y, , ~ N (0,5, 7).

Second, regarding the analysis of the computed average misallocation, the linear term

UiTU?;} (B*XOZN)
= OtN)

T, Et[

n{ has a mean of zero and does not affect the average misallocation around year

Ornrphttr | T, 0 ] given the temperature distribution or forecastability (7", o ) The
=2
at o%

constant term (lﬂf)g is small as it is of the fourth order in o,r. If we are interested in ana-

lyzing a positive change in agT, ignoring this term would only T{ead to an underestimate of the
welfare loss associated with MRPK dispersion; similarly, for a negative change in aiT (e, a
decrease in forecast error), ignoring this term would lead to an underestimate of the benefits.
Thus, we will always capture a conservative lower bound. Therefore, we conclude that the

first-order approximation approach in the main text is valid for the purpose of analysis.
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