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Abstract

We argue that accounting for capital heterogeneity is important for understanding
the sources and costs of misallocation. We prove that, conditional on the same observ-
ables, further disaggregation of capital types will always lead to a higher measured
cost of misallocation. Quantitatively, accounting for capital heterogeneity increases
measured costs of misallocation by 7 p.p. (19%) in the U.S. and 6 p.p. (24%) in In-
dia. Across countries, structures are consistently more misallocated than equipment.
We then estimate a dynamic model to disentangle sources of misallocation that can
explain the additional measured misallocation and the efficiency differences between
equipment and structures. Results indicate that adjustment costs and imperfect infor-
mation cannot fully explain the additional misallocation or why structures are more
misallocated. Heterogeneous financial constraints and tax policies may contribute to
the higher misallocation of structures, while heterogeneous technology and measure-
ment errors play only modest roles.
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1 Introduction

Distortions in the allocation of capital across firms can reduce aggregate productivity.
However, measuring these distortions is hard, and different strategies can lead to very dif-
ferent results. Much of the literature, including the seminal work of Restuccia and Roger-
son (2008) and Hsieh and Klenow (2009), relies on a convenient but probably significant
assumption: different types of capital–whether machinery, buildings, or vehicles–are ho-
mogeneous. In other words, these different types of capital are perfect substitutes in a
firm’s production.

The issue of proper capital aggregation has been unresolved since the Cambridge-
Cambridge controversies (see Cohen & Harcourt, 2003; Nunes-Pereira & Graça Moura,
2024, for reviews), after which an aggregate capital index has been commonly used in
macroeconomics. However, much empirical evidence, especially from the literature on
aggregate productivity and capital composition (Caselli & Wilson, 2004; Wilson, 2009), as
well as estimations of housing production (Combes, Duranton, & Gobillon, 2021; Epple,
Gordon, & Sieg, 2010, and others), suggests that the elasticity of substitution among capi-
tal types is distinctive finite. Hence, a question naturally arises: how does accounting for
imperfect capital substitutability change our understanding of the sources and the costs of
capital misallocation?1

In this paper, we first argue that treating all capital as homogeneous generally un-
derestimates the extent of capital misallocation (i.e. marginal revenue product of capital
dispersion). Moreover, understanding the asset-specific sources of misallocation is essen-
tial for explaining the efficiency differences across different types of capital.2 While the
implications of capital heterogeneity have been investigated in production networks (vom
Lehn & Winberry, 2022), ICAPM (Gonçalves, Xue, & Zhang, 2020) and stock market (Luo,
2022), the capital misallocation literature has been silent to it.

To relax the assumption of capital homogeneity, we propose a novel static measure-
ment framework that allows firms to use multiple types of capital in production. In this
framework, different types of capital are aggregated by a constant elasticity of substitution
(CES) aggregator. When elasticity of capital substitution approaches infinity, our frame-
work nests the model in Hsieh and Klenow (2009), where the CES capital bundle collapses
into an aggregate capital index as the sum of all types of capital.

The main theoretical insight from the measurement framework is as follows: the mea-
sured costs of capital misallocation decrease as the elasticity of capital substitution in-
creases. The underlying intuition is that, assuming a larger elasticity of capital substitution,
economists believe firms can create a larger CES capital bundle with a fixed set of capital
inputs (since, intuitively, different types of capital are easier to substitute). As a result,

1 In this paper, we use imperfect capital substitutability, capital heterogeneity, heterogeneous capital inter-
changebly. We also use perfect substitutability, capital homogeneity and homogeneous capital interchange-
bly.

2 The frictions studied in the misallocation literature are typically assumed to affect all types of capital equally,
and thus cannot explain the empirical finding that the dispersion of marginal products varies significantly
across different capital types.
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measured firm-level productivity declines, which eventually leads economists to consider
a smaller counterfactual efficient output. As the observed realized aggregate output moves
closer to the counterfactual efficient output with a larger elasticity of capital substitution,
economists will conclude that the costs of capital misallocation are smaller. This theoreti-
cal insight suggests that whenever the elasticity of capital substitution is finite, measuring
capital misallocation at a more disaggregated level uncovers “within-firm”, capital-specific
distortions.3

To apply the framework to data, the first step is to estimate the value of the elasticity
of capital substitution. This parameter has been of interests since the seminal work of
Sato (1967), after which a small literature has tried to identify the elasticity with aggregate
time series or sector-level panel data. Given the data limitation, the best we can do is to
estimate the firm-level elasticity of equipment and structures substitution in the US. In
our main specification, we regress the ratio of sector-level equipment’ and structures’ user
costs on the firm-level ratio of equipment and structures quantities. To disentangle the true
elasticity from the bias of technical change (León-Ledesma, McAdam, & Willman, 2010),
we implement exogenous variation in capital prices via a “shift-share” approach. The
estimated results are around 0.3 across different specification, suggesting that different
forms of capitals are strong complements.4

Applying the estimated elasticity of capital substitution and our framework to data, we
focus on three datasets: Compustat North America (US), India Annual Survey of Indus-
tries (India), and Orbis Global Financials for Industrial Companies. By disaggregating the
total fixed assets into equipment and structures, our measurement framework measures
around 7 percentage points (19%) more misallocation in the US and 6 percentage points
more (24%) in India. Further disaggregate capital into six different types of assets in ASI,
the difference between the two measures can range as high as 40 percentage points, equiv-
alently, 90% of the total misallocation. Results from the Orbis data show that this difference
also holds in Australia, China, Canada, France and Japan ranging from 3% to 26%.5

To further explore the allocative efficiency differences between different types of cap-
ital, we apply the methodology in D. R. Baqaee and Farhi (2020) to decompose aggre-
gate misallocation by capital type. We found that although the marginal revenue product
of equipment is three times less dispersed than that of structures, equipment contributes
more to aggregate misallocation due to its larger share in firms’ production—almost twice

3 “Within-firm” holds true when we ignore the capital bundle aggregation heterogeneity. In fact, we should
also consider that different composition of different types of capital will lead to heterogeneous capital after
the CES aggregation. Hence, using only the total fixed asset to measure the capital misallocation not only
miss the capital imperfect substitutability, but also ignore this type of capital heterogeneity.

4 There are surprisingly few papers that estimate firm-level elasticity of capital substitution from the literature.
The first existing estimate can be attributed to Boddy and Gort (1971), who use variation in capital prices
and capital expenditure to identify the elasticity of substitution between equipment and structure at the
sector-level to be 1.72. At the occupation level, using 24 capital goods, over 9 occupations, Caunedo, Jaume,
and Keller (2023a) estimated that γ = 1.13. Moreover, Ahlfeldt and McMillen (2014) estimate for elasticity
between land and capital in housing production and argue that land and capital are closed to a Cobb-Douglas
form.

5 We argue that our estimation is likely conservative, as in reality, total fixed asset can be further disaggregated
into more than just six types, e.g. Wilson (2009) who uses more than 19 different assets in estimation.
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that of structures.
The empirical evidence of heterogeneous allocative efficiency between equipment and

structures suggests the need to consider capital-specific frictions or distortions when study-
ing sources of misallocation. The literature typically assumes that frictions are common to
all types of capital, which cannot explain our decomposition results (e.g., markups in Pe-
ters, 2020).6 Moreover, we also want to know what frictions/distortions contribute to the
additional misallocation measured with finite elasticity of capital substitution.

We extend our static measurement framework to incorporate dynamic investments in
equipment and structures with frictions. Specifically, we explicitly model quadratic equip-
ment and structure adjustment costs (Asker, Collard-Wexler, & De Loecker, 2014) and im-
perfect information, where firms learn about future productivity from a noisy signal as
Bayesian learners (David, Hopenhayn, & Venkateswaran, 2016; Ropele, Gorodnichenko,
& Coibion, 2023). In addition to these two frictions, we introduce HK09-type residual dis-
tortions for equipment and structures to capture the remaining misallocation.

For model estimation, we extend the methodology of David and Venkateswaran (2019)
by using the Simulated Method of Moments (SMM) to estimate our dynamic model with
moments from Compustat. While we consistently calibrate most parameters, we estimate
the model using three values for the elasticity of substitution between equipment and
structures: 0.3, 1, and 4. This allows us to assess which frictions contribute more to misal-
location when elasticity is lower. With the estimated model, we assess the counterfactual
impact of each friction on aggregate misallocation by isolating their individual effects.

Results from the counterfactual analysis indicate that adjustment costs and informa-
tion frictions cannot account for the additional misallocation observed when elasticity de-
creases. Together, equipment and structural adjustment costs contribute approximately
2% of aggregate TFP loss, regardless of how elasticity is calibrated. Similarly, information
frictions consistently lead to a 1% TFP loss. Furthermore, adjustment costs explain only a
small fraction of the efficiency differences between structures and equipment: structural
adjustment costs alone result in greater MRPS dispersion than the MRPE dispersion driven
by equipment adjustment costs, although this difference is modest compared to what is ob-
served in the data. Imperfect information also fails to explain the efficiency differences, as
it generates nearly identical MRPS and MRPE dispersions.

Instead, the two residual distortions emerge as the primary factors explaining the ad-
ditional misallocation and the greater dispersion of MRPS compared to MRPE. Conse-
quently, we investigate the economic forces within these residual distortions that account
for these observations. We primarily consider four candidates: heterogeneous financial
frictions, tax policies, heterogeneous technology, and potential measurement errors.

First of all, to incorporate heterogeneous financial frictions into our model, we assume
that firms need costly liquidity in order to operate. Unlike the standard modeling of the

6 Understanding sources of misallocation for each type of capital is important, since a common friction acting
on all types of capital can not explain different dispersion of marginal products of different types of capi-
tal. If a common friction drives MRPE and MRPS dispersion simultaneously and identical, counterfactual
implication that the covariance of the marginal revenue product of equipment and structures be exactly one.
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financial friction in the literature (Buera, Kaboski, & Shin, 2011; Gopinath, Kalemli-Özcan,
Karabarbounis, & Villegas-Sanchez, 2017; Midrigan & Xu, 2014; Moll, 2014), we adopt a
stylized continuous liquidity cost that is jointly determined by equipment, structures, and
the firm’s leverage ratio. Additionally, we assume that firms with a higher leverage ratio
face greater liquidity costs. The optimality condition for liquidity asset holding suggests
a structural regression, where we regress equipment and structures on the leverage ratio.
When applying this approach to Compustat data, our results indicate that firms with a
higher leverage ratio tend to hold more structures. This finding aligns with the intuition
presented by Sraer and Thesmar (2023) and Kermani and Ma (2023), which posits that
structures are more frequently used as collateral.

Second, following House and Shapiro (2008) and Zwick and Mahon (2017), we study
the effect of the tax policy known as “bonus” depreciation on the dispersions of MRPE and
MRPS. The “bonus” depreciation accelerates the schedule for when firms can deduct the
cost of investment purchases from their taxable income. However, this tax policy is not
applicable to most structures investments. Using this tax policy, we find that a one stan-
dard deviation increase in the policy is associated with a 0.3 standard deviation decrease
in MRPE dispersion, while it has no statistically significant effect on MRPS dispersion.

Technology heterogeneity and measurement errors can be considered part of reduced-
form distortions. To quantify the contribution of heterogeneous equipment and structures
elasticity, we employ three alternative methods: (i) allowing firms to use different types of
capital within a sector; (ii) utilizing the GNR estimator (Gandhi, Navarro, & Rivers, 2020)
for estimating firm-level input elasticity; and (iii) assuming perfect comovement between
equipment, structures, and labor distortions. The first method examines the extensive
margin, while the latter two methods examine the intensive margin of technology hetero-
geneity. Our results indicate that technology heterogeneity is not a major factor in capital
misallocation. To assess measurement errors, we follow Bils, Klenow, and Ruane (2021)
and find no additional errors when using equipment and structures data.

The remainder of the paper is organized as follows: Section 2 presents the theoreti-
cal framework for our analysis. Section 3 provides an overview of the three micro-level
datasets used and how we infer misallocation from them. In Section 4, we estimate the
elasticity of capital substitution. Section 5 presents empirical results from applying our
static measurement framework to various databases. Section 6 conducts a quantitative
exercise to estimate sources of asset-specific misallocation. Sections 6 and 7 detail the dy-
namic structural model and its estimation results. Section 8 discusses additional findings
and robustness checks, while Section 9 concludes the paper.

2 Measuring Misallocation with Capital Heterogeneity

To measure misallocation with capital heterogeneity, we develop a novel static framework
where different types of capital are imperfect substitutes. We begin with a baseline model
of a one-sector economy and demonstrate two main theoretical results: (i) assuming per-
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fect substitutability among different types of capital invariably leads to an underestimation
of capital misallocation levels; and (ii) increasing the granularity of capital disaggregation
results in a higher measured level of misallocation. We then extend our framework and
theoretical findings to a multi-sector economy.

2.1 Baseline Model: One-sector Economy

We model the demand side of our framework closely following HK09, which is also the
norm of this literature. Consider a static, one-sector economy with monopolistic competi-
tive firms. The final output Y is aggregated from a set of differentiated firm-level outputs
by a CES production function

Y =

(
N∑
i=1

Y
σ−1
σ

i

) σ
σ−1

, (2.1)

where N and Yi represent the total number of firms and their outputs. The elasticity of
substitution of goods, σ is larger than one. 7

Our modeling innovation lies in the firm’s production technology. Rather than assum-
ing a single capital K to represent a firm’s total fixed assets, we allow for M types of
heterogeneous capital Kmi and labor Li in firm’s production function

Yi = Ai

(
M∑
m=1

α
1
γ
mK

γ−1
γ

mi

) γ
γ−1

α

L1−α
i , (2.2)

where Ai denotes the firm’s total factor productivity, αm indicates the intensity of usage
for each type of capital, and α represents the overall capital share.

More importantly, The elasticity of capital substitution, denoted as γ, determines how
easily one type of capital can be substituted for another in the production process.8 Dif-
ferent values of γ indicate different production function, as it is shown in Figure 1. When
γ < 1, different types of capital are gross complements, whereas γ > 1 indicates that they
are gross substitutes. Three limiting cases are noteworthy. First, as γ → 0, the capital
bundle becomes Leontief, meaning different capitals must be used in fixed proportions.
Second, when γ → 1, the capital bundle reduces to what a Cobb-Douglas structure would
imply.

Thirdly and more importantly, as γ → ∞, which is commonly assumed in the litera-
ture, different types of capital become perfectly substitutable. This means that firms can
replace one type of capital with another without any diminishing returns. In this limit,
the production function collapses into the case in HK09 and most of the other work in the

7 The profit maximization of the final output producer yields the inverse demand for firm-level output Yi =

Y
(

P
Pi

)σ

where P =
(∑N

i=1 P
1−σ
i

) 1
1−σ is the aggregate price index. These settings are standard in the capital

misallocation literature.
8 For example, in equilibrium, it measures the percentage change in the ratio of employed capital types due to

a one percent change in the price ratio of these inputs.
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Figure 1: Different Values of γ Determines Production Functions

Note: This figure shows how different values of the elasticity of capital substitution determine the
functional forms of firm’s production functions. The range of the elasticity of capital substitution
is from zero to infinity.

capital misallocation literature

Yi = Ai

(
M∑
m=1

Kmi

)α
L1−α
i ≡ AiK

α
i L

1−α
i . (2.3)

This is a simple two-factor Cobb–Douglas production function, where we define the
total capital stock of firm i as Ki =

∑M
m=1Kmi. In the data, Ki is just the total fixed assets,

corresponding to the total book value of different types of capital stock, after normalizing
all types of capital stock as dollar-valued unit.9

Labor and all M types of capital have a fixed aggregate supply such that
∑N

i=1 Li = L

and
∑N

i=1Kmi = Km,∀m. Firms face M +1 types of distortions.10 The first type, as output
distortion τY , increases firm’s marginal products of all types of capital and labor by the
same proportion. The rest of M types of distortions, {τKmi}Mi=1, raises marginal products
of type M -th capital relative to labor. The profit maximization problem of the firm is given
by:

max
{Pi,Yi,Kmi,Li}

(1 + τY i)PiYi −
M∑
m=1

(1 + τKmi)RmKmi −WLi,

subject to : Yi = Y

(
P

Pi

)σ
.

The details of solving the firm’s problem is attached in Appendix A.1.11 In equilibrium,

9 Since what we observe from the data is always the nominal value of different types of capital, we can nor-
malize their quantities so that their prices are all equal to one. In the capital misallocation literature, the
prices of factors do not impact the measurements, since, intuitively, only the within-sector second moment
of factors’ efficiency matters for the measurements. We will introduce this unit of choice more formally in
the data section.

10 Because there are M + 1 factors of production, we can only separately identify M + 1 distortions. Here, we
keep our framework consistent with HK09, modeling all distortions as the distortions relative to labor.

11 To quickly see how a capital-specific wedge distorts the usage of it, see the firms’ first-order conditions with
respect to capital Kmi:

Kmi(∑M
n=1 α

1
γ
n K

γ−1
γ

ni

) γ
γ−1

= αm

 Rm(1 + τKmi)(∑M
n=1 αnR

1−γ
n (1 + τKni)1−γ

) 1
1−γ


−γ

, (2.4)

where the optimal use of type-m capital,Kmi, relative to others, is influenced by its cost relative to other cap-
ital costs. A larger distortion τKmi discourages a firm from using Kmi. Additionally, when facing the same
τKmi, a higher γ value further disincentivizes the use of type- m capital as it allows for easier substitution
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the marginal revenue products of capital m and labor Li can be written as:

MRPKmi =
1 + τKmi

1 + τYi
Rm, MRPLi =W

1

1 + τYi
(2.5)

and the intuition is straightforward: the marginal revenue product of capital type m is
increasing in the type-specific distortion. Firms with a larger distortion, i.e., higher τKmi,
will find it more expensive to use Km and will use an insufficient amount in production,
yielding a higher revenue return than the market rental rate.

The dispersion of τKmi among firms indicates misallocation: there could be an output
gain by reallocating capital Km from firms with lower MRPKmi to those with higher
MRPKmi.12 However, it is worth mentioning that with a CES production function in
a distorted economy, there does not exist a closed-form sectoral aggregation production
function. This prevents us from using the log-normal assumption and the variance of
MPRKmi dispersion as sufficient statistics to infer the cost of capital misallocation in an
economy.13

It is worth mentioning that, in two special cases, our firm’s optimization problem co-
incides with the firm’s problem with homogeneous capital as in the HK09 case. The first
situation occurs when the elasticity of capital substitution approaches infinity, as men-
tioned above. In this case, all types of capital become identical for the firm’s production;
firms will then, in the short run, purchase only the capital type with the lowest price, and
in the long run, only one type of capital will be produced. The second situation occurs
when the correlation between distortions of different types of capital is independent of the
firm, i.e., 1+τKmi

1+τKni
= βmn. In this case, each firm will optimally use the same ratio of differ-

ent types of capital in production, allowing us to rewrite the CES production function as a
Cobb-Douglas production function with only one capital investment wedge.

2.2 Efficient Allocation and Two Measures of Misallocation

To understand the aggregate implications of heterogeneous capital distortions, we charac-
terize the efficient counterfactual level of output when all input distortions are absent with
the following lemma

Lemma 1 The allocation that maximizes the output of the economy satisfies:

with other capital types in production.
12 One can think of the capital wedges in our model as shadow prices representing the constraints firms en-

counter in different asset markets. These constraints could take the form of collateral restrictions when
renting equipment or buildings and thus limit firms’ access to factors of production. The wedges, therefore,
capture the economic costs imposed by these constraints and the resulting distortions in resource allocation.
In any case, the wedges summarize the inefficiencies arising from distorted factor markets and the resulting
deviations from the optimal allocation of resources.

13 When γ = 1 as a special case, we can still use the variance of marginal revenue products of different types of
capital as sufficient statistics to infer the cost of misallocation. In a special case with Cobb-Douglas function,
MRPKmi is the same as average revenue product of capital (ARPKmi) which is defined as sales over
capital Kmi.
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Lei =
Aσ−1
i∑N

j=1A
σ−1
j

L, (2.6)

Ke
mi =

Aσ−1
i∑N

j=1A
σ−1
j

Km, ∀m (2.7)

for all firms, given firm-level productivities Ai and the aggregate factor supply L and Km for all
m. Under this efficient allocation, the efficient level of aggregate output Y e is determined by the
following aggregate production function:

Y e = TFP e ·

(
M∑
m=1

α
1
γ
mK

γ−1
γ

m

) γ
γ−1

·α

· L1−α , TFP e =

(
N∑
i=1

Aσ−1
i

) 1
σ−1

(2.8)

Proof. See Appendix A.3.
Lemma 1 can be derived straightforwardly from the condition that MRPKmi and

MRPLi are the identical across different firms.14 The conditions for efficient allocation
reveal a proportional relationship: a firm with higher productivity gets a larger share of
labor and each type of capital. Moreover, the economy features a Cobb-Douglas aggregate
production function. The aggregate efficient TFP is a CES aggregated firm-level produc-
tivity.

With the efficient benchmark established, we can define a measure of distance to the
frontier as a gap between actual output and the ideal output described in Lemma 1. This
will allow us to characterize the cost of misallocation. Specifically, we will focus on two
closely related measures of misallocation that are commonly used in the literature: alloca-
tive efficiency (e.g. Bils et al. (2021)) and output loss (e.g. D. Baqaee and Farhi (2022)).

Definition 1 Allocative Efficiency (AE) is defined as:

AE =
Y

Y e
(2.9)

Allocative efficiency captures the proximity of the actual output to the ideal scenario
posited in Lemma 1. It is defined as the ratio of the economy’s actual output to what might
have been achieved in a distortion-free economy. An AE = 1 denotes that the economy is
operating at its efficient frontier with no misallocation. Conversely, AE < 1 highlights the
presence of misallocation such that the economy is producing less than its full potential.

Definition 2 Output Loss (L) is defined as:

L = log Y e − log Y = − log(
Y

Y e
) = − log(AE) (2.10)

14 This also implies that TFPRi is identical across all firms instead of TFPi. Here, we use the same definition
in Hsieh and Klenow (2009) which defines TFPRi as the revenue productivity, and TFPi or TFPQi as the

(quantity) productivity. In this framework TFPRi ≡ σ
σ−1

[
(
∑M

m=1 αmMRPK
1−γ
i )

1
1−γ

α

]α (
MRPLi

1−α

)1−α

.
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Output loss measures the actual loss in output due to misallocation using a logarithmic
scale to show the percentage difference from the efficient output level. We provide a simple
example with a Cobb-Douglas economy as a special case to better understand how input
distortions affect allocative efficiency in Appendix A.2.

2.3 Measurement Primitives and Conventions

When applying our measurement framework to datasets in order to quantify misallocation
from the data, three measurement primitives are needed: firm-level dataset (D), fixed pa-
rameters (P), and a choice of elasticity of capital substitution (γ).15 The firm-level dataset
includes revenue (PiYi), wage bills (Li) and capital stocks of different types ({Kmi}Mm=1).16

The fixed model parameters contains the elasticity of goods substitution (σ), the capital
share (α) and the CES share parameters capturing the relative importance of different types
of capital in the capital bundle ({αm}Mm=1).

Bringing data to our framework, we specify the unit for any type m of capital, Km, as
the dollar-valued quantity of that capital. This allows us to follow the common practice
in misallocation literature, taking the book value of capital (e.g., PPEGT/PPENT in Com-
pustat) as the capital stock in the firm. Moreover, when breaking down the capital into
its types, the stock values are comparable as they are all valued in current-dollar terms.
Therefore, Km can refer to both the quantity of Km in the model and its market (book)
value in dollars in the data.

More specific to the fixed parameters calibration, we assume that researchers calibrate
the CES share parameters according to Convention 1, as shown below.

Convention 1 Under the choice of unit, the CES share parameters are measured as the share of
market (book) value: αm = Km∑

mKm
.

We argue that convention 1 is consistent with the empirical norm of calibration. From
a calibration point of view, as suggested by Klump, McAdam, and Willman (2012), the
normalization of CES share should be in correspondence to the expenditure share in the
reference economy. However, since the expenditure share is almost never observed in the
literature using the CES aggregator on different assets, researchers commonly use the share
of dollared stock value to calibrate the CES share of an asset, as in Whited and Zhao (2021).

We also think that convention 1 is theoretically consistent. Consider the net rental rate
of the capital of type m (given the static nature of our accounting model) , Rm, and the
nominal price of the capital of type m, PKm . As noted by Jorgenson (1963), Karabarbounis
and Neiman (2019), and recently in vom Lehn and Winberry (2022), the net rental rates

15 The elasticity of capital substitution, γ, is the parameter central to our analysis. In the process of misalloca-
tion measurement, researchers might assume different values of γ. We will take the data and fix other model
parameters, but provide comparative statics of measured misallocation by varying γ. Thus, we can provide
quantitative statements on the size of measured misallocation between a researcher choosing γ = ∞ another
one choosing a finite γ.

16 For example, Compustat provides data on book values of various capital assets like Machinery and equip-
ment (FATE), Buildings (FATB), and others. By mapping these assets to our theoretical types of capital, we
can obtain measures of Kmi.
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of type m at time t, measured without aggregate taxes or wedges, is given by: Rmt

PK
mt

=[(
PK
mt−1

PK
mt

)
(1 + rt)− 1

]
, where rt is the aggregate interest rate. Then, in a static model where

the steady state behavior of the pricing model is analyzed, we would have that for any
two assets m and n:Rm

PK
m

= Rn

PK
n

. With our choice of quantity unit, the price unit would be
PKm = PKn , which implies that Rm = Rn. Therefore, the net sectoral expenditure share of
capital in our static model would be:

αm =
RγmKm∑
nR

γ
nKn

=
Km∑
nKn

, (2.11)

which is consistent with Convention 1.

2.4 Main Theoretical Results: Measured Misallocation with Capital Hetero-
geneity

Given the same dataset and fixed model parameters, our goal is to demonstrate that within
this framework, the larger the elasticity of capital substitution considered by researchers,
the smaller the measured cost of capital misallocation. To see this, we first show in the
following lemma that assuming different values of γ affects the measurement of firm-level
productivity.

Lemma 2 Conditional on the same data and fixed model parameters, measured firm-level TFP will
decrease with the chosen elasticity of capital substitution

∂Ai(γ)

∂γ
=

∂

∂γ

κ (PiYi)
σ

σ−1(∑M
m=1 α

1
γ
mK

γ−1
γ

mi

) γ
γ−1

α

L1−α
i

 ≤ 0. (2.12)

Proof. See Appendix A.4.
The proof is in the spirit of the results in Klump and de La Grandville (2000). κ is a

constant which is irrelevant to firm’s productivity.17 The implication of this lemma is quite
straightforward: a larger γ suggests greater flexibility in substituting one type of capital
for another. Hence, for a given set of inputs, higher γ will measure a higher level of input

bundle
(∑M

m=1 α
1
γ
mK

γ−1
γ

mi

) γ
γ−1

α

L1−α
i . Therefore, given the same observed revenue PiYi in

the data, a lower level of firm-level TFP will be measured for researchers.18

17 The scalar κ =W 1−α (PY )−
1

σ−1 /P , where W , Y and P are wage, aggregate output and price respectively.
In the dataset, we do not observe aggregate output and price seperately from the data. However, since
both firm-level output and price will not change with different elasticity of capital substitution, so κ can be
normalized as one. This just says that if with a good dataset where we can get information of firm-level
output and price seperately, it won’t affect our results.

18 Notice that our framework has no restrictions on the capital wedges, τKmi . The only factor we consider
is capital’s imperfect substitutability. In fact, when the capital wedges across different types of capital are
identical, i.e., there are no cross-type capital distortions, the capital distribution across different types of
capital within a firm is the same across different firms. Hence, in this case, our Convention 1 becomes
αm = Km∑

m Km
= αmi =

Kmi∑
m Kmi

. This means that the CES share calibration happens to be firm-specific. In
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The insight from Lemma 2 will be the heart of our arguments for the main results.
When a firm’s technology inherently permits minimal substitution (i.e., small γ), but a
researcher assumes the capital types to be highly substitutable, the resulting measure-
ments can overstate the firm’s productivity, leading to an inaccurately smaller production
possibility frontier. This overestimation of productivity will affect the estimation of the
counterfactual first-best output and ultimately alter the results of capital misallocation, as
demonstrated in the following proposition.

Proposition 1 Conditional on the same data and fixed model parameters that satisfy Convention
1, we always have:

γ < γ′ ⇒ AE(γ) < AE(γ′). (2.13)

Proof. See Appendix A.5.
When comparing allocative efficiency between two measurements with different γ, we

are essentially comparing two different first-best outputs, as the observed output is based
on the data. Recall from Lemma 1 that the efficient aggregate output is composed of aggre-
gate productivity and a capital bundle. When Convention 1 holds, the CES capital bundle
collapses into the sum of all different types of capital, which is independent of γ. Hence, γ
only affects the efficient output through the productivity component.19

The insight from Proposition 1 is that when researchers think firms can more easily re-
place one type of capital with another, they perceive firms as less productive (from Lemma
1). Therefore, when input sets are fixed, a larger γ results in a smaller production pos-
sibility frontier, reducing the efficient level of output and increasing measured allocative
efficiency.

When further disaggregating different types of capital into more detailed categories,
we observe that finer disaggregation of capital inputs also leads to lower measured effi-
ciency, as shown below

Corollary 1 For any datasets D = (Ri, Li, {Kmi}Mm=1)
N
i=1 and D′ = (Ri, Li, {Km′i}M

′
m′=1)

N
i=1

where M ′ > M , and model parameters P = (σ, α, {αi}Mi=1) and P ′ = (σ, α, {αi′}M
′

i′=1) that
satisfy Convention 1:

AE(γ,D′,P ′) ≤ AE(γ,D,P).

Proof. See Appendix A.6.
In other words, further disaggregation of capital into finer types will measure more

misallocation, due to the fact that disaggregation reveals more about the previously unac-
counted imperfect substitutability of capital, which amplifies the cost of underlying dis-
tortions. This proposition suggests that the more detailed capital category researchers ob-
serve from datasets, the larger cost of capital misallocation they will measure using our
framework.

this case, ∂Ai(γ)
∂γ

= 0.
19 However, in the empirical measurement we will show that violation of Convention 1 will not qualitatively

change the results.
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Our results still hold when we observe actual capital expenditure in the dataset. To
see this, let RmKm for m = 1, 2, . . . ,M represent the expenditure on type-m capital. The
CES share is then calibrated as α′

m = RmKm∑
mRmKm

, ∀m, which is equivalent to normalizing
type-m capital Km by Rm. Consequently, when inferring the firm’s productivity, we use
Kmi
Rm

, the normalized unit of capital. With this adjustment, our proof remains valid.

2.5 Measurements in the Multi-sector Economy

In empirical measurements of capital misallocation, it is important for researchers to con-
sider sectoral heterogeneity. The previous framework was built up on a simple economy,
figuring one sector with multiple firms, so we extend it into a multi-sector economy model
in this section.

We assume a representative firm producing the final good Y in a competitive market,
by combining sectoral output Ys of S different industries using a Cobb-Douglas production
function

Y = ΠSs=1Y
θs
s , and

S∑
s=1

θs = 1, (2.14)

where θs is the share of sectoral expenditure in GDP. Within each sector, the setting is the
same as our one-sector framework, but different sectors are different in their capital (for
any types) and labor intensities and endowments.

Although it does not affect our quantitative measurement, our theoretical Proposition 1
and Corollary 1 remain valid in a multi-sector economy under the assumption of no cross-
sectoral distortions, i.e., we do not allow reallocation across sectors. The market clearing
conditions are

Nm∑
i=1

Kmi = Km,

Nm∑
i=1

Li = Lm, ∀m ∈ {1, 2, ...,M}, (2.15)

where Nm is the number of firms in different sector. Formally,

Proposition 2 In a multi-sector economy, for each sector S and correspondent datasets Ds and
model parameters Ps satisfying Convention 1, Proposition 1 and Corollary 1 hold true when the
economy has no sectoral distortions.

Proof. See Appendix A.7.
This focus on within-industry misallocation aligns with the work of Hsieh and Klenow

(2009) and Bils et al. (2021),20 among others, but differs from the approaches taken by
Jones (2011), Hang, Krishna, and Tang (2020),21 and other papers considering production
20 In a robustness check of Hsieh and Klenow (2009), they show that: “Cobb-Douglas aggregation across sectors

means that TFPR equalization does not affect the allocation of inputs across sectors; the rise in a sector’s productivity
is exactly offset by the fall in its price index”. Bils et al. (2021) models the cross secteral distortions but only
focus on within sector misallocation.

21 In the equation of sectoral capital and labor share relative to the total endowment in Hang et al. (2020), if we
assume TKs and TLs are both zero, our Proposition 1 and Corollary 1 can still be applied to their framework.
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networks. We stick to only study the within-sector misallocation, considering the fact that
reallocation across different sectors on each specific capital might lead to some counter-
intuitive situations. For example, the machines in a coffee shop can be reallocated to a
body shop. 22 The Cobb-Douglas aggregation across capital bundle and labor in firm’s
production will not affect our proof (Mallick and Maqsood (2023)).

The reason why cross-sectoral factor reallocation will hurt our theoretical results is that
the calibration of CES shares in Convention 1 does not allow the elasticity to be canceled in
the aggregate capital bundle. Hence, when comparing two efficient outputs with different
elasticities, researchers need to consider whether the effect on the measured aggregate
TFP or capital bundle is larger. As a final remark, our framework can still be applied to
measure when there are cross sectoral distortions, but whether larger elasticity of capital
substitution increases the measured cost of misallocation can only be found quantitatively.

3 Firm-level Data and Inferring Allocative Efficiency

To infer capital misallocation, our framework requires data on firm-level output, labor
expenditure, and the book values of different types of capital. We primarily use data
from Compustat North America, the Indian Annual Survey of Industries (ASI), and Or-
bis Global Financials. Table 1 summarizes the geographical coverage, sample period, and
types of capital covered in each dataset.

3.1 Three Main Datasets

The Compustat North America database, managed by S&P Global, serves as our primary
data source, covering over 10,000 U.S. public firms from 1985 to 2019 and providing de-
tailed financial information on these companies.23 We use Compustat’s classification of
fixed assets into two types: structures and equipment. The ‘structures’ category includes
physical constructions such as buildings, facilities, and land improvements, while the
‘equipment’ category encompasses tangible movable assets like machinery, hardware, ve-
hicles, and tools.24 After removing outliers and observations with missing data, we are left
with a total of 116,143 firm-year observations across 96 3-digit NAICS sectors from 1985 to
2019.
22 Oberfield (2013) shows that during Chilean crisis of 1982, between industry allocational efficiency accounts

for roughly one-third of TFP loss. Syverson (2011) summarizes that even within 4-digit SIC industries in the
US, the average difference in logged total factor productivity is still quite large.

23 In comparison to the Longitudinal Research Database (LRD) used in Bils et al. (2021) or the Census of Man-
ufacturing used in HK09, Compustat has relatively narrower coverage, focusing on publicly traded firms.
Nevertheless, it offers detailed yearly book value data on five fixed asset categories for most firms, which
meets our requirements.

24 We have chosen to adopt a more aggregated approach to equipment and structure delineation, as opposed
to utilizing Compustat’s detailed classification into four or five granular capital categories. This decision
stems from the dataset’s coverage of approximately 5,000 firms initially, with many of them not reporting
expenditures across various fine-grained asset classes. While limited in granularity, this extensive dataset
establishes a useful comparative benchmark of capital allocation patterns.
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Table 1: Data Sources with Firm-level Capital Allocations

Data Source Coverage Years Types of Capital

Compustat United States 1985-2019
1. Structure
2. Equipment

Indian ASI India 2000-2019

Structure:
1.1 Land
1.2 Building
Equipment:
2.1 Plant+Machinery
2.2 Transportation
2.3 Computer
2.4 Others

Orbis (Detailed Format) China, Japan, UK, Canada, Australia 2010-2019
1. Equipment
2. Structure
3. Others

Note: This table shows the datasets used in our empirical and quantitative exercise. The Compustat
North American is from WRDS database. Indian ASI is from Indian Ministry of Statistics and Pro-
gramme Implementations. The Orbis Detailed Format is from Oribs Global.

Our data for India comes from the Annual Survey of Industries (ASI).25 ASI conducts
a survey that ensures national representativeness of formal manufacturing plants in India,
with coverage extending to plants employing a minimum of 10 workers with power usage
and a minimum of 20 workers without power usage.26 It covers the universe of large plants
and a random but representative sample of small plants in India’s manufacturing sector.
ASI consistently covers six types of capital inputs, which can be broadly categorized into
equipment and structure. Structures encompasses land and buildings, while equipment
includes plant and machinery, transportation equipment, computers, and other miscella-
neous equipment. We use the official panel identifiers to link the longitudinal surveys into
a panel database, and we harmonize all sector classifications into 3-digit NIC-98 classifica-
tion. In the full sample, we have a total of 701,543 firm-year observations across 95 sectors.
We also use a restricted sample, in which firms use all six types of capital inputs, covers
316,863 firm-year observations spanning 89 sectors.

The third dataset we use is the Orbis Global Financials dataset (Detailed Format),
which provides firm-level financial information across multiple countries from 2010–2019.27

Specifically, Orbis covers companies in China, Japan, the UK, Canada, Australia, and sev-
eral other European nations. This dataset categorizes capital expenditures into three broad
categories: equipment, structures, and other. The equipment category includes machinery,
vehicles, hardware, and other tangible operational assets. Structures encompasses build-
ings, facilities, and land. The “other” category captures miscellaneous fixed assets not clas-
sified as either equipment or structures. The “Detailed Format” Orbis data covers samples
of firms in several industrialized economies, and is used as a robustness check.28

25 ASI has been used by many researchers to studied capital misallocation and growth (see, for example, Hsieh
and Klenow (2009), Bils et al. (2021), and Boehm and Oberfield (2020)).

26 Another advantage of ASI is that the information is at plant-level instead of firm-level. Kehrig and Vincent
(2021) argued that, for multi-plant firms, firm-level marginal products are not a good proxy when measuring
the loss of misallocation

27 Others who studied capital misallocation and used Orbis as the main data source include Gopinath et al.
(2017), Jurzyk and Ruane (2021) and so on.

28 A key benefit of Orbis is providing an international perspective on asset-specific capital misallocation, com-
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The main variables we use include revenue, labor and different types of capital. In
Compustat, we measure a firm’s output using sales (SALE)29, labor as number of employ-
ees (EMP), equipment (FATE) and structures as total fixed assets (PPEGT) minus equip-
ment (FATE). In ASI, we construct the revenue as total sales, labor as total wage bill of all
workers, material cost as total input costs and six types of capital as the net value of lands,
buildings, plants and machinery, transportation, computers and others (fixed assets minus
the first five types), and labor as wage bills. The details of variable construction and data
cleaning are attached in Appendix B.

3.2 Inferring Allocative Efficiency

We use ∧ to denote measued values from datasets. We follow the literature to measure
TFPR and TFPQ as

TFPRsi ≡
P̂siYsi(∑M

m=1 α
1
γ
msK̂

γ−1
γ

msi

) γ
γ−1

α

L̂1−α
si

, (3.1)

TFPQsi ≡ κs

(
P̂siYsi

) σ
σ−1(∑M

m=1 α
1
γ
msK̂

γ−1
γ

msi

) γ
γ−1

α

L̂1−α
si

, (3.2)

and we normalize κs as 1 when we only consider within-sector factors reallocation. We
use firm revenue to infer the realized real sectoral aggregate output

Ŷs =

(
N∑
i=1

Ŷ
σ−1
σ

i

) σ
σ−1

=

(
N∑
i=1

((
P̂siYsi

) σ
σ−1

)σ−1
σ

) σ
σ−1

=

(
N∑
i=1

P̂siYsi

) σ
σ−1

, (3.3)

then we use measured TFPQsi to determine what are the optimal distribution of factors
across firms in sector s, following Lemma 1

L̂esi =
TFPQσ−1

si∑N
j=1 TFPQ

σ−1
sj

L̂s, (3.4)

K̂e
msi =

TFPQσ−1
si∑N

j=1 TFPQ
σ−1
sj

K̂ms. ∀m (3.5)

Using the inferred counter factual capital and labor distribution, we measure the counter

plementing our focus on US and India. However, inconsistencies in reporting standards between countries
requires caution in making direct cross-country comparisons.

29 Value added measures are not available in Compustat
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factual firm output and sectoral output

Ŷ e
si = TFPQsi

(
M∑
m=1

α
1
γ
msK̂e

γ−1
γ

msi

) γ
γ−1

α

L̂e
1−α
si , (3.6)

Ŷ e
s =

(
N∑
i=1

Ŷ e
σ−1
σ

si

) σ
σ−1

. (3.7)

Finally, we can measure the allocative efficiency by comparing the ratio of two aggre-
gate outputs

ÂE =
Ŷ

Ŷ e
=

∏S
s=1 Ŷ

θs
s∏S

s=1 Ŷ
e
θs
s

=
S∏
s=1

ÂE
θs
s . (3.8)

To calibrate the measurement framework, we set the country-sector capital shares (αs)
by the median value of cost shares, following Asker et al. (2014).30 We also set country-
sector output shares (θs) by the ratio of sectoral and economy-wise value-added. For the
CES shares of heterogeneous types of capital, we set αm corresponding to the share of each
type of capital following Convention 1. We set the elasticity of substitution between goods
σ = 6. 31

4 Estimation of the Elasticity of Capital Substitution

4.1 Estimation Approach

We follow Caunedo, Jaume, and Keller (2023b) to estimate the elasticity of capital substi-
tution γ using the first order conditions from the firm’s maximization problem. The CES
structure yields the relative demand curve between the quantity ratio and the price ratio
of capital m and m′,

ln

(
Km
sit

Km′
sit

)
= γ ln

(
Rm

′
st

Rmst

)
+ γ ln

(
(1 + τm

′
sit )

(1 + τmsit)

)
+ γ ln

(
αms
αm′s

)
. (4.1)

Estimating with this FOC, one needs to detailed data for both capital stock at the firm-
level and rental rate at the sector level. The only data source that could provide us with
such variations is the US Compustat data, accompanied with the detailed fixed asset prices
from BEA Fixed Asset Table (FAT).32 We thus benchmark reduced-form exercises to have
only two types of capital: equipment and structure from Compustat. We work with the

30 David and Venkateswaran (2019) and Gopinath et al. (2017) set a constant factors shares across all sectors,
but their focus is on the structure part.

31 The macroeconomics literature estimates this number as from 3 to 10. Hsieh and Klenow (2009) uses 3, Bils
et al. (2021) uses 4 and David and Venkateswaran (2019) uses 6.

32 The website of BEA Fixed Asset Table (FAT) is: https://www.bea.gov/itable/fixed-assets.
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following empirically specification of (4.1),

ln

(
Ssit
Esit

)
= Conts + γ ln

(
REst
RSst

)
+ FEs + εit, (4.2)

where Ssit and Esit are the firm-level capital stock constructed from the perpetual inven-
tory method; REst and RSst are the sector-specific equipment and structure user costs. FEs
include firm fixed-effect and year fixed-effect, and Conts refers to constants, such as factor
shares ratio. Our goal is to estimate an unbiased γ which to be used in measuring capital
misallocation.

4.2 Data and Construction of User Costs and Capital Quantities

Data Every year, the Bureau of Economic Analysis (BEA) publishes detailed data on the
nominal value of capital stock for over 50 categories of detailed assets owned by each 3-
digit industry in the Fixed Asset Table (FAT). Furthermore, all tangible assets are classified
into equipment or structures. Price indexes for private fixed investment of these assets
are provided in the NIPA Table of BEA. For assets in structures, we use the BEA prices;
however, for equipment assets, we instead use the Cummins and Violante (2002) quality-
adjusted prices as in Caunedo et al. (2023b).

Sector-level User Cost of Equipment and Structures. The REst and RSst are the sector-
year specific user costs of equipment and structures. To measure these, we first construct
an asset-specific user cost for all the subcategories (30 types in total) of equipment ({E})
and structures ({S}) in the BEA fixed asset table using the Jorgenson (1963)’s user cost
formula,33

Rat =
Pat−1

λct−1

R−
(
1− δ̄at

) Pat
λct

Pat−1

λct−1

 ,
where a is a detailed asset type, δ̄at is the average depreciation rate and Pat−1 is its price
index. R is the risk-free rate and λct is the consumption price index.34 The BEA provides
nominal capital stock for detailed assets at the 3-digit NAICS level, which allows us to
compute an aggregate sector-year level rental rate for equipment (structures) capital using
a Törnqvist index over Rat using a’s expenditure share in the total equipment (structures)
user costs as aggregation weights,

ln(RXst) =
∑
a∈{X}

R̂atPsatKsat∑
a∈{X} R̂atPsatKsat

× ln(Rat), ∀X = E,S, (4.3)

33 This is defined as the real user cost per unit of real asset stock.
34 The rationale of the formula is the following: form an investor’s perspective, the post-depreciation capital

gain of any asset, when evaluated in the unit of consumption goods, must satisfy the no-arbitrage condition
and equal to the risk-free rate. Alternative measures of R include the annual real interests rate or the AAA
bond yield (to account for the risk-premium). We have verified that our estimates for γ is not sensitive to
the choice of R.
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where R̂at =
Ratλct−1

Pat−1
is the user cost per dollar of asset a and PsatKsat is the measured

nominal capital stock of asset a in sector s. Therefore, R̂atPsatKsat∑
a∈E R̂atPsatKsat

is the cost share of a

out of all assets in equipment.

Capital Quantities of Equipment and Structures We apply the standard perpetual in-
ventory method to construct the quantity of equipment and structure at the firm level in
Compustat. We observe the book values of equipment and structures at the firm-year level
and treat the depreciation-adjusted differences of book values between years as the nomi-
nal value investment.

The main challenge lies in the absence of sector-specific investment goods price for
equipment and structures at the sector level. To address this, we use the detailed asset
prices Pat and their nominal investment expenditure PsatIsat at the sector-year level from
FAT to construct a Tornqvist Index of equipment and structure investment goods prices

ln(P IEst ) =
∑
a∈{X}

PsatIsat∑
a∈{X} PsatIsat

ln(Pat), ∀X = E,S. (4.4)

Using the constructed investment price series, we first initialize the equipment stock
of each firm as Ei0 = Book ValueEi0

P
IE
i0

using the firm’s first observation in the panel and then

compute the investment quantity in year t as IEit+1 =
Book ValueEit+1−(1−δst)Book ValueEit

P
IE
it

. Finally,

we can iteratively compute firm i’s equipment stock as Eit+1 = (1 − δst)Eit + IEit+1. The
construction for structures stock follows the same logic.

4.3 Estimation Results

Applying Equation 4.1 to Compustat, we exploit the relative rental rate differences across
3-digit NAICS sectors in the US in order to identify the firm-level elasticity of substitution
between equipment and structure. The inclusion of two-way fixed-effects in our specifica-
tion ensures that we are only capturing the within-firm and within-year response of input
adjustments in reaction to price change. Therefore, the specification in Equation 4.1 iden-
tifies the short-run response to a transitory relative price shock. We will also examine the
long-run elasticity of capital substitution following the approach in Boehm and Oberfield
(2020), detailed in Appendix C.

To account for the potential endogeneity of the relative price of capital to the users’
technological differences and distortions, we follow similar strategies as Hubmer (2023)
and Castro-Vincenzi and Kleinman (2022) and employ a set of “shift-share” instruments,
ln(RE,IVit ) − ln(RS,IVit ), for the relative price of capital, where the variables ln(RE,IVit ) and
ln(RS,IVit ) are defined as

ln(RX,IVst ) =
∑
a∈{X}

R̂a,1980Psa,1980Ksa,1980∑
a∈{X} R̂a,1980Psa,1980Ksa,1980

× ln(Pat), ∀X = E,S. (4.5)
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Each of them is a sector-specific weighted average of the log price of the detailed equip-
ment/structures assets, using the assets’ cost shares in industry s in 1980 as weights. In
contrast to the sector-level rental rate in Equation 4.3, this shift-share measure leverages
both the heterogeneous changes in the price of asset during the 1984-2016 period and the
differential exposure at baseline of each industry to these detailed assets.

Table 2: Main Estimation Results of Equipment-Structures Elasticity

OLS IV IV IV IV

ln
(

RE
st

RS
st

)
0.176∗∗∗ 0.313∗∗∗ 0.156∗∗∗

(0.024) (0.074) (0.030)

ln

(
P

KE
st−1

P
KS
st−1

)
0.278∗∗∗

(0.072)

ln

(
P

IE
st−1

P
IS
st−1

)
0.343∗∗∗

(0.075)
ln
(

Ssit−1

Esit−1

)
0.621∗∗∗

(0.011)
ln
(

Ssit−2

Esit−2

)
0.038∗∗∗

(0.008)
Firm FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes

Observations 81,884 81,287 80,853 81,447 60,090
R2 0.826 0.001 0.007 0.008 0.455
K-P F-stats 527.070 2707.560 1671.604 329.132

The validity of our instrument is rooted in the long-standing literature to explain the
three-fold decline of equipment prices since 1960 (Jones (2016)), which has been over-
whelmingly regarded as a consequence of of the technological progress of the equipment
producers, which is exogenous to the shifting demand from firms. Similarly, there has been
a two-fold rise of structure prices and residential structure prices since 1960s. Although
less studied, this aggregate trend has been attributed to the supply constraints Rognlie
(2016), rather than demand-side factors. Reassuringly, we show in Appendix C that our
results are unchanged by only using the SSIV for equipment or for structures.

The estimated results are shown in Table 2. We use three different specifications by
choosing: user costs ratio, capital bundle price ratio and investment price ratio as different
empirical proxies for the relative price of equipment and structure. Through all specifi-
cations, we find that all IV estimates favor an elasticity of capital substitution of 0.3, with
our preferred estimates of 0.31 in Column (2). We find that in our sample of Compustat
firms, equipment and structure are gross complements in production, which is far from the
γ → ∞ assumption in the misallocation literature. Interestingly, we have also estimated
the long-run elasticity of capital substitution in Appendix C and found the long-run elas-
ticity to be around 0.3 as well. Therefore, we set γ̂ = 0.3 in our preceding analysis.
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5 Measuring Misallocation under Capital Heterogeneity in Data

Applying datasets to our measurement framework, our objectives are manifold. First, we
empirically quantify the magnitude of difference between measuring capital misallocation
using total fixed assets and multiple different types of capital. Second, we explore how
sensitive this difference is to different values of the elasticity of capital substitution and
levels of capital disaggregation.

5.1 Homogeneous Capital vs. Heterogeneous Capital

Using data from Compustat and the Indian ASI, we compute allocative efficiency for each
economy every year under two different parameterizations: (1) using equipment and
structures with a elasticity γ = 0.3, our benchmark; and (2) total fixed assets with infi-
nite elasticity (γ → ∞), as HK09 does. Figure 2 shows that the measured allocative effi-
ciency is consistently lower for models with heterogeneous capital in the US Compustat.
Not accounting for capital heterogeneity leads to an underestimation of the cost of capital
misallocation with scales range from 3.19 to 13.97 percentage points. The average of this
difference is 7.1 percentage points, which is almost 25% equivalently.

Figure 2: Time Series AE in the US and India

Note: In the figure on the left hand side, we use data from the ASI to measure two allocative
efficiency. The allocative efficiency is defined by real output over optimal output. The
green line denotes using homogeneous capital as HK–09, the blue dashed line with red
dots uses six different types of assets, plant and machinery, transportation, computer, land,
building and others, with varying value of γ.

Figure 2 displays similar measurement results for India. We assume that elasticity of
substitution between equipment and structures is also 0.3 in India. The difference in alloca-
tive efficiency between these using total fixed assets and both equipment and structures to
measure ranges also from around 6 to 14 percentage points, which are 14% to 32% of the
total welfare loss equivalently. Moreover, we also plot the allocative efficiency measured
using six different types of capital (land, building, equipment and machinery, transporta-
tion, computer and others). When taking the same number of γ, we measure a very low
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allocative efficiency, ranging from 2% to 5%. This will indicate that the difference between
one and six types of capital can be up to 45% percentage points. These results show that
accounting for a γ = 0.3 elasticity of capital substitution can measures a significantly larger
capital misallocation compared to the homogeneous capital case.

5.2 Measured Misallocation and the Elasticity of Capital Substitution

For testing the sensitivity of the measured allocative efficiency to the value of γ, we adopt
γ with multiple different numbers from 0.1 to 4 and compute the yearly average allocative
efficiency in the left panel of the Figure 3.

Figure 3: Empirical Results of 6 capital from India ASI

Note: In the figure on the left hand side, we use data from the ASI to measure two allocative
efficiency. The allocative efficiency is defined by real output over optimal output. The
green line denotes using homogeneous capital as HK–09, the blue dashed line with red
dots uses six different types of assets, plant and machinery, transportation, computer, land,
building and others, with varying value of γ.

Consistent with our theoretical results, the greater the value of γ, the larger the al-
locative efficiency researchers will measure. When γ = 0.1, different types of capitals are
almost Leontief in production with an extreme amount of complementarity. The measured
allocative efficiency is only around 5%, indicating a large loss of misallocation around 95%

of the efficient output. In this case, ignoring capital heterogeneity overstates allocative ef-
ficiency by roughly 40%. When we set such that different types of capitals are combined
using a Cobb-Douglas function in production (γ = 1.01 as a proxy), the measured AE is
37.35%, and ignoring capital heterogeneity would overstate allocative efficiency by 8.70%.
However, as γ becomes very large and different types of capitals are highly substitutable
in production, the measured allocative efficiency will converge to the model in which we
assume homogeneous capital. Overall, we find that the model with homogenous capital
reports only a lower bound on the measured cost of misallocation. Such underestimation
will be larger for economies or sectors with strong complementarities between various
capital types.

In the right panel of Figure 3, we leverage the detailed disaggregation of capital to
measure to what extend the finer disaggregation of capital would measure less alloca-
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tive efficiency. We measure the disaggregation of total fixed assets into 2 types of capital
(equipment and broadly defined structure); 3 types of capital (equipment and structure
and others); 4 types of capital (equipment, land, buildings, and others); 5 types of capital
(transportation equipment, PP&E, land, buildings and others); and 6 types of capital in
our benchmark case.

The results show that measured allocative efficiency with the level of disaggregation.
By assuming γ = 0.3 throughout all cases, we find that, on average, the further disaggrega-
tion of one additional capital type led to a decrease of 1.47% measured allocative efficiency.
Also, we consistently find that finer disaggregation always leads to more measured misal-
location.

5.3 Underestimation of Misallocation in the Global Sample

As a robustness check, we measure the allocative efficiency for other countries using the
Orbis data, assuming γ = 1 (since our Orbis data does not allow us to estimate γ for each
countries). Table 3 summarizes the cost of capital misallocation across several countries in
percentage terms of potential output. The countries examined include the United States,
India, Australia, China, Canada, France, and Japan. For each country, we provide results
for different scenarios: one assuming homogeneous capital and the others accounting for
heterogeneous capital with different numbers of capital types. Consistent across all coun-
tries, the findings reaffirm our theory of measurement. There are substantial disparities
between the two approaches in estimated TFP loss, ranging from 2% to 26%.

Table 3: The Undemeasured Costs of Misallocation

US India Australia China Canada France Japan
Homogenous Capital 38% 52% 36% 37% 19% 13% 13%
Hetero. Capital (2 Types) 43% 54%
Hetero. Capital (3 Types) 62% 43% 30% 18% 16%
Hetero. Capital (6 Types) 64%
Undermeasured TFP Loss 5% 2%–12% 26% 6% 11% 5% 3%

Note: This table presents measuring the allocative efficiency across different countries with a Cobb-
Douglas production function (i.e. assuming the elasticity of capital substitution is one). Homoge-
neous capital refers to using the total fixed asset to measure capital misallocation. The first row shows
the allocative efficiency using total fixed assets in measurements, and the subsequent three rows are
refereed to using different sub-types capital to measure. The last row represents the difference of AE
between heterogeneous and homogeneous capital.

5.4 The Decomposition of Misallocation by Capital Types

We now decompose the distortions associated with which types of capital contribute to
most of the misallocation costs in the aggregate economy. We characterize the costs of
misallocation by applying the D. R. Baqaee and Farhi (2020) results to our measurement
framework in the following Lemma.
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Lemma 3 Under Convention 1, in an economy with only capital-related distortions (τEi and τSi),
the misallocation costs in the economy, to the second-order, can be expressed as:

∆ log TFP =

S∑
s=1

θs
(σ − 1)α2

sα
2
Es + αs(α

2
Es + γαEsαSs)

2
V arλ [log(1 + τEsi)]︸ ︷︷ ︸

Equipment Distortions

+
S∑
s=1

θs
(σ − 1)α2

sα
2
Ss + αs(α

2
Ss + γαEsαSs)

2
V arλ [log(1 + τSsi)]︸ ︷︷ ︸

Structures Distortions

+
S∑
s=1

θsαsαEsαSs (1− γ + σ(αs − 1))Covλ [log(1 + τEsi), log(1 + τSsi)]︸ ︷︷ ︸
Mixed Distortions

.

where V arλ[1 + τXsi] = Eλ[(1 + τXsi)
2] − E2

λ[1 + τXsi] is a sales-weighted variance of input
distortions and λsi =

P e
siY

e
si

P e
s Y

e
s

is the sales share of firm i in sector s in the efficient economy.

Proof. See Appendix A.8.
Lemma 3 is a generalization of Hsieh and Klenow (2009) with heterogeneous capital

and non-unitary elasticity of substitution and without the assumption of log-normality
of wedges in the cross-section of firms. From Lemma 3, we see that in the expression of
measured TFP loss with structures and equipment capital, ∆ log TFPs, the first two terms
account for the variance in capital distortions associated with equipment and structures,
respectively. Moreover, the sales weights take into account the fact that the same distortion
is more costly if it is associated with a more productive firm.

A high variance implies a high level of misallocation because firms are not optimally
utilizing these types of capital. The last term captures the covariance between the distor-
tions in equipment and structures capital. When γ < 1+αs(σ−1), such that different types
of capitals are weak substitutes or complements, if these distortions are correlated, say due
to a policy that simultaneously taxes factory building and equipment investment for the
same firm, then the misallocation (and therefore TFP loss) could be even more severe as it
makes the size of productive firms shrink even more. Since the traditional measure using
aggregate capital doesn’t differentiate between types, it cannot capture the unique misal-
location patterns associated with equipment or structure capital.
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Figure 4: Decomposition of Aggregate Misallocation on Different Types of Capital
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Applying this decomposition formula to the US (2 types of capital) and India (6 types
of capital) datasets, Figure 4 show the decomposition of total capital misallocation decom-
position for an average year in the sample. In both the United States and India, equipment
distortion emerges as the primary source, accounting for 104% and 88% of misallocation
costs, respectively. Meanwhile, structure distortion contributes significantly to the misal-
location costs in the United States (60.3%), but its impact is comparatively lower in India
(12.4%).

Lastly, notice that the ”mixed” distortions contribute negatively to the misallocation
costs for both the US and India, indicating that different types of capital distortions are, at
least on average, negatively correlated across firms. This is a novel finding. Since a firm
facing higher-than-market costs for equipment is more likely to face lower-than-market
costs for structures, our measurement suggests that considering only those distortions that
constrain the use of all types of capital simultaneously is unlikely to provide a complete
understanding of capital misallocation.

Notice that not only does capital-specific marginal product dispersion contribute to
aggregate capital misallocation, but so does its share in firms’ production. In fact, in Com-
pustat, the measured MRPS dispersion is almost three times larger than MRPE dispersion.
However, since equipment is more commonly used in production, equipment distortions
have a greater impact on the total aggregate cost of capital misallocation.

6 A Firm Dynamics Model with Two Types of Capital

Extending the static measurement framework by explicitly modeling the sources of struc-
tures and equipment misallocation in a dynamic context, our goals are twofold: (i) to study
which sources contribute to additional misallocation, and (ii) to identify which sources of
misallocation explain the efficiency differences between equipment and structures. To es-
timate our model, we follow and extend the methodology in David and Venkateswaran
(2019), which disentangles misallocation into adjustment costs, informational frictions and
other firm-specific wedges.
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6.1 Model Set-up: Extending the Static Framework

Environment Time is discrete and infinite. A representative household living in the econ-
omy consumes the final good, and provides labor of mass N inelastically. There is no
aggregate uncertainty in this economy and all aggregate variables remain constant.

There is a continuum of firms with measure one in this economy. Each firm i produces
heterogeneous intermediate goods with labor as well as equipment and structure using a
constant-return-to-scale CES technology

Yit = Âit

(
α

1
γ

EE
γ−1
γ

it + α
1
γ

S S
γ−1
γ

it

) γ
γ−1

α̂K

N α̂N
it , (6.1)

where parameter αE (αS) is the equipment (structure) share, and α̂K (α̂N ) is the capital
(labor) share. Âit represents the firm-specific physical productivity. A final good producer
combines goods from individual firms and producing competitively with a CES aggrega-
tor:

Yt =

(∫
Y

σ−1
σ

it di

) σ
σ−1

(6.2)

where σ ∈ (1,∞) is the elasticity of substitution between intermediate goods, and the
aggregate price index is normalized as one (Pt = 1).

Firms’ Problem In the beginning of each period, firm i hires workers from the compet-
itive labor market with at a wage, Wt. There are no frictions in the labor market. Sub-
sequently, after completing production, firm i determines investments in equipment and
structure for the upcoming period. Investments for equipment and structure are subject to
quadratic adjustment costs, given by

Φ (Kit+1,Kit) =
ξ̂K
2

[
Kit+1

Kit
− (1− δK)

]2
Kit, ∀K = {E , S} (6.3)

where δK is the depreciation rate, and ξK denotes to the intensiveness of adjustment cost.
In addition to adjustment costs, the firm faces capital-specific distortions, denoted as

TE and TS , when making investment decisions. We solve for optimal labor choice and
plug it into the above optimization problem, resulting in

V (Eit, Sit, Iit) = max
Ei,t+1,Si,t+1

Eit
[
GAit

(
α

1
γ

EE
γ−1
γ

it + α
1
γ

S S
γ−1
γ

it

) γ
γ−1

α

−
∑

K={E,S}

TKi,t+1RKKi,t+1(1− β(1− δK))− Φ (Ki,t+1,Kit)

]
+ βEit [V (Ei,t+1, Si,t+1, Iit+1)] , (6.4)

where αi = α̂i
(
1− 1

σ

)
, ∀i = K,N , α = αK

1−αN
, Ait = Â

1− 1
σ

1−αN
it is the profit productivity,

and the constant term G = (1− αN )
(
αN
W

) αN
1−αN Y

1
θ

1
1−αN . RK for K = {E,S} are prices
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for equipment and structures, and we normalize RE = 1 as numeraire. Moreover, Eit[·]
denotes expectations conditional on the firm’s information set, Iit, which will be discussed
in detail below.

Productivity From now on, we will refer to the profit productivity, ait ≡ log(Ait) as a
firm’s productivity. We assume that ait follows to an AR(1) process,

ait = ρait−1 + µit, µit ∼ N
(
0, σ2µ

)
(6.5)

ρ is the degree of persistence and σ2µ stands for the variance of the innovations µit.

Investment Wedges The functional forms of log(TE) and log(TS) are specified as follows

τKit = γKait + εKit + χKi , (6.6)

in which lowercase letters represent variables after taking the logarithm. The wedges con-
sist of three components: (i) γK , the distortions in equipment and structure correlated with
a firm’s productivity; (ii) εKit , the i.i.d. firm–capital-type–specific shocks; and (iii) χKi , the
permanent components that capture firm-specific, time-invariant effects.

One of our key deviations from David and Venkateswaran (2019) is that we allow
shocks to be correlated across types:[

εEit
εSit

]
∼ N

(
0,

[
σ2
εE

σεEεS

σεEεS σ2
εS

])
, and

[
χEi
χSi

]
∼ N

(
0,

[
σ2
χE σχEχS

σχEχS σ2
χS

])
(6.7)

where the σεEεS and σχEχS are covariance of distortions. The non-zero correlations be-
tween shocks are consistent with our empirical findings, resulting in a mixed distortion
between equipment and structure that would also contribute to the aggregate capital mis-
allocation. Therefore, these two covariance terms are potential candidates for explaining
the importance of mixed distortion in aggregate capital misallocation.

Information Firm i does not know its future productivity except for receiving a noisy
signal ui,t+1

ui,t+1 = µi,t+1 + fi,t+1, fit+1 ∼ N
(
0, σ2f

)
(6.8)

where the noise shock fi,t+1 is normally i.i.d. distributed.
Firm i perfectly observes the transitory shocks and the permanent components of

wedges. Thus, the firm’s information set is given by Iit =
(
ait, ui,t+1, ε

E
i,t+1, ε

S
i,t+1, χ

E
i , χ

S
i

)
.

We assume that firm i learns using Bayes’ rule, and that yields the posterior distribution
of productivity, ait+1 as following:

ait+1 | Iit ∼ N (Eit (ait+1) , V ) (6.9)
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where

Eit (ait+1) = ρait +
V

σ2f
sit+1, V =

(
1

σ2µ
+

1

σ2f

)−1

(6.10)

6.2 Solving the Model

We solve the model via a perturbation method. Specifically, we log-linearize the firm’s
Euler equations around their steady states given by Ait = Ā and TEit = TEit = 1, which
yields

ẽi,t+1 [(1 + β)ξE + 1− αEα] = Eit(ãit+1) + τ̃Eit+1 + βξEEit(ẽi,t+2) + αSαs̃i,t+1 + ξE ẽi,t (6.11)

s̃i,t+1 [(1 + β)ξS + 1− αSα] = Eit(ãit+1) + τ̃Sit+1 + βξSEit(s̃i,t+2) + αEαẽi,t+1 + ξS s̃i,t (6.12)

where ξE , ξS and τEi,t+1, τ
S
i,t+1 and rescaled versions of the adjustment cost parameters, ξ̂E ,

ξ̂S and the distortion, log TEi,t+1, log T
S
i,t+1, respectively. We use guess and verify method to

solve the two policy functions given below:

ẽi,t+1 = ψE
1 ẽit + ψE

2 s̃it + ψE
3 Eit(ãi,t+1) + ψE

4 ε
E
i,t+1 + ψE

5 ε
S
i,t+1 + ψE

6 χ
E
i + ψE

7 χ
S
i (6.13)

s̃i,t+1 = ψS
1 s̃it + ψS

2 ẽit + ψS
3 Eit(ãi,t+1) + ψS

4 ε
S
i,t+1 + ψS

5 ε
E
i,t+1 + ψS

6 χ
S
i + ψS

7 χ
E
i (6.14)

where ψE1 ∼ ψE7 and ψS1 ∼ ψS7 are undetermined coefficients and can be pinned down
by Euler equations. In Appendix D, we present the full process of solving our model, a
quantitative analysis of the properties of the two policy functions, and a detailed discus-
sion of how different frictions impact future investments in structures and equipment. We
also provide insights into how γ influences the estimation results. In the main body of the
paper, we focus on the quantitative findings.

7 Quantitative Analysis: Capital-Specific Misallocation Decom-
position

7.1 Calibration and Moments

Applying our model to moments from the Compustat, we first calibrate the parameters in
preference and production functions following the standard way in the literature. We set
the value of discount factor (β) to be 0.95 as the moments are generated by using yearly
data. We assume the elasticity of goods substitution (σ) to be 6 in the baseline results, to
be consistent with our static framework and also be comparable with the results in David
and Venkateswaran (2019).

Firm’s production technology is assumed to be constant return to scale. Following
Asker et al. (2014), factor shares are calibrated by using the median value of the cross-
sectional distribution of factors: capital share in production (α̂K) is set to be 0.33 and
equipment share in capital (α̂E) is 0.66. We follow Hulten and Wykoff (1980) to set the
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Table 4: Calibration and Estimation

Parameter Description Target/value
Preferences/production
σ Elasticity of substitution 6
β Discount rate 0.95
δE (δS) Equipment (Structure) Depreciation 0.14 (0.03)
α̂K Capital share 0.33
α̂N Labor share 0.67
α̂E Equipment share 0.66
α̂S Structure share 0.34
γ Equipment and structures substitutability 0.3, 1, 4
Productivity }ρ Persistence of productivity ρa,a−1

σ2
µ Shocks to productivity σ2

a

Frictions
V Signal precision } ρe,a−1, ρs,a−1

ξE , ξS Equipment/Structure adjustment costs ρe,e−1
, ρs,s−1

γE , γS Equipment/Structure Correlated factors ρarpe,a, ρarps,a
σ2
εE , σ2

εS , σ2
εEεS Transitory factors σ2

e , σ2
s , σ2

e,s

σ2
χE , σ2

χS , σ2
χSχE Permanent factors σ2

arpe, σ2
arps, σ2

arpe,arps

depreciation rates for equipment and structure (δE and δS) to be 0.14 and 0.03, respec-
tively.

We set the elasticity of substitution between equipment and structures (γ) to be 0.3, the
estimated value in Section 4. To tease out the intuition of how imperfect substitutability
changes our understanding of the sources of investment frictions, we also experiment with
two alternatives: γ = 1, and γ = 4. The first panel of Table 4 summarizes our calibration.

Then, we parameterize the law of motion of productivity (ait). We measure firm-level
productivity as the model-specific linearized Solow residual ait = pit+yit−α(αEeit−αSsit),
up to an additive constant. We then use the AR(1) specification to estimate the auto-
correlation coefficient and variance of residuals

(
ρ, σ2µ

)
meanwhile controlling for year by

industry fixed effects.
Finally, we use SMM to estimate the remaining parameters in the model. In selecting

moments, we closely follow David and Venkateswaran (2019), choosing similar moments
but for equipment and structures separately. Specifically, we demonstrate in Appendix D
that the parameters of interest,

{
ξK ,V, γK , σ2εK , σ

2
χK

}
∀K=E,S

, can be uniquely identified

by the following moments: (1) the autocorrelation of equipment (structure) investment
growth (ρ∆k,∆k−1); (2) the correlation between equipment (structure) investment and pre-
vious fundamentals (ρk,a−1); (3) the correlation between the marginal product of equip-
ment and structures and current fundamentals (ρ∆arpk,a); (4) the variance-covariance ma-
trix of equipment and structure growth rates (σ2∆k); and (5) the variance-covariance matrix
of the average product of equipment and structures (σ2arpk).35 In aggregate capital level,
these moments are also commonly used in the literature to estimate souces of misalloca-

35 The reason we use the average revenue product of capital (ARPK) rather than the marginal revenue product
of capital (MRPK) is twofold. First, directly inferring MRPK from the dataset requires assumptions about
the model’s steady states and expenditure shares. Second, the moments of ARPK/ARPS remain constant
when the value of γ changes, making it more general in the estimation procedure.
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tion.36

Table 5: Target Moments and their Relevant Channels from Compustat

ρ σ2
µ ρ∆e,a−1 ρ∆s,a−1 ρ∆e,∆e−1 ρ∆s,∆s−1 ρarpe,a ρarps,a

United States 0.95 0.06 0.09 0.11 -0.34 -0.33 0.51 0.31
σ2
∆e σ2

∆s σ2
∆e,∆s σ2

arpe σ2
arps σ2

arpe,arps

United States 0.05 0.10 0.02 0.42 0.75 0.24

Note: The data source of calibration is the Compustat North American (1985 – 2019). When cali-
brating the producticity process, the production function is assumed to be Cobb-Douglas where
γ = 1. Average revenue producte of equipment and structures (apre and aprs) are defined as the
ratio of sales over equipment or structures.

Calibrated moments from US Compustat are shown in Table 5 which provides us hints
for estimation results. For example, the correlation between ARPE and productivity is
higher than that between ARPS and productivity, indicating that equipment might be more
costly to adjust. Furthermore, the variance of structure investment growth rate is higher
than that of equipment investment growth rate. Additionally, the variance of ARPE is
smaller than the variance of ARPS. This evidence suggests that the equipment residual
distortion might be less volatile in both i.i.d. and permanent shocks.

7.2 Results of Estimation: What Contributes to the Additional Misallocation?

The model matches the moments closely for all values of γ, as reported in Table E.5 of
Appendix D. We present the baseline estimation results of parameters in Table 6. In Figure
5, we cluster the frictions into same types and then compute the contributions of each
individual type to the loss of welfare (using Lemma 3) by isolating each individual type
in the absence of the others. This allows us to measure the TFP impact of each channel
relative to the efficient allocation with equalized marginal products across firms.37

Adjustment Costs. The estimation results with Compustat show that the equipment ad-
justment cost increases with γ, while structures adjustment cost decreases with it. To our
main specification (γ = 0.3), the estimates of 1.06 and 1.92 indicates values of 0.20 and 0.16

for ξ̂E and ξ̂S in the adjustment cost function. This suggests that in the US, the equipment
adjustment cost is roughly 1.25 times greater than the structure adjustment cost, similar to
the results in Israelsen (2010).38 These two numbers are roughly in the midel compared
to the capital adjustment costs literature (David and Venkateswaran (2019), Cooper and
Haltiwanger (2006), and Bloom (2009)).

36 For example, Cooper and Haltiwanger (2006) uses the autocorrelation of equipment (structure) investment
growth to determine their adjustment costs; Klenow and Willis (2007) uses the correlation between equip-
ment (structure) investment and previous fundamentals to estimate the imperfect information; Bartelsman,
Haltiwanger, and Scarpetta (2013), Hsieh and Klenow (2014), and later Bento and Restuccia (2017) use the
correlation between the marginal product of equipment and structures and current fundamentals to identify
correlated factors.

37 Since frictions can be correlated with each other, the individually generated misallocation need not sum up
to be exactly the total TFP loss we observed from the data.

38 The result is different from the assumptions from Jermann (2010) and Tuzel (2010).
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Table 6: Baseline Estimation Results (Compustat)

Parameters Description γ = 0.3 γ = 1 γ = 4

ξE Equipment adjustment cost 1.06 1.68 2.32
ξS Structure adjustment cost 1.92 1.33 1.34

V Signal precision 0.03 0.03 0.03

γE Equipment correlated factor −0.34 −0.23 −0.19
γS Structure correlated factor −0.00 −0.16 −0.21

σ2εE Equipment transitory 0.11 0.09 0.12
σ2εS Structure transitory 0.32 0.08 0.05

cov(εE , εS) i.i.d. correlation factor −0.19 −0.08 −0.05

σ2χE
Equipment permanent factor 1.09 0.29 0.26

σ2χS
Structure permanent factor 3.47 0.65 0.28

cov(χE , χS) correlation factor −1.36 0.15 0.25

Intuitively, the underlying reason behind this pattern could be that plants and ma-
chinery are designed and produced for specific purposes. For instance, cash machines are
intended solely for shopping. Consequently, when firms need to buy or sell such equip-
ment (cash machines) for further investment or divestment, they encounter lower liquidity
in the secondary market. However, structures, such as land, can be easily bought and sold,
then repurposed to serve entirely different functions for different firms and operations.

By turning on equipment and structures adjustment cost only, our results show that
regardless of the value of γ, the aggregate TFP loss induced by adjustment costs always
is always around 2%. This pattern implies that the larger capital misallocation, caused by
assuming a smaller number of substitutability γ in measurements, can not be attributed
to the change of estimated adjustment costs and productivity dispersion. Hence, com-
pared to a dynamic firm investment “undistorted” benchmark (Asker et al. (2014)), capital
hetereogeneity still measures more misallocation.

Imperfect Information. The estimated imperfect information is significantly different
from 0 and remains stable as γ decreases from 4 to 0.3. Our estimates of V = 0.03 imply
a signal-to-noise ratio of around 1 and US firms could reduce uncertainty by 44% through
learning from productivity news. At the aggregate level, imperfect information always
causes a 1% TFP loss, aligning qualitatively close to David et al. (2016). This loss is only
slightly smaller as γ decreases. Hence, we argue that similar to adjustment costs, increased
misallocation due to capital heterogeneity isn’t driven by greater inferred information fric-
tions. 39

Residual Distortions. All three estimated components of investment distortions signif-
icantly vary with different values of γ. We estimate the correlations between equipment
39 It is also worth mentioning that we limit the role of imperfect information at the firm-level. In fact, firms’

expectation errors in the aggregate economy can also induce capital misallocation, as evidenced in Ropele et
al. (2023) and Wang (2024). As a result, it could be the case that information friction plays a more significant
role in explaining misallocation.
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Figure 5: Contributions of Frictions on Aggregate Productivity (Compustat)
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Note: This table presents the counterfactual total factor productivity (TFP) loss generated
when only one type of friction exists in the economy, with varying values of γ. Specifically,
AdjC refers to costs associated with equipment and structures, Corr denotes correlated
factors affecting equipment and structures, iid indicates transitory shocks to equipment
and structures, ImpInf stands for imperfect information, and Perm refers to permanent
factors.

and structure distortions and productivity at 0.35 and 0.002, respectively. Compared to the
literature, the equipment correlation is higher than Hsieh and Klenow (2014)’s estimate of
0.09 in the U.S. and falls within the range of Bento and Restuccia (2017) (from 0.22 to 0.74

across different countries). The structure correlation is minimal because land and build-
ings are typically non-tradable across locations and funded by long-term bonds, making
them less liquid than equipment. Overall, correlated factors account for only 1% of the ag-
gregate TFP loss, and their contribution to total misallocation decreases as different types
of capital become more complementary.

Next, the estimated variances of equipment and structures transitory factors are larger
with smaller γ, while their covariance becomes more negative. The increasing variances
lead to more misallocation losses while their declining covariance implies less. Jointly, as γ
decreases, the transitory components actually induce only a 1% TFP loss, which is unable
to account for the extra misallocation observed in the measurement.

Finally, our results show that permanent distortions capture all other sources of mis-
allocation that cannot be explained by the channels mentioned above. The estimated per-
manent distortions are much more dispersed and negatively correlated with smaller γ,
similar to the transitory components. However, the permanent components can generate
more than 20% of TFP losses when γ = 0.3, in stark contrast to the 12% when γ = 4 as well
as the 13% estimate in David and Venkateswaran (2019). Hence, the estimation suggests
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that firm-specific permanent factors are responsible for the large difference in misalloca-
tion measurement when accounting for realistic complementarity. 40

7.3 Which Sources Make Structures More Misallocated?

Both the measured dispersion of MRPS and MRPE from Section 5.4, as well as the vari-
ances of ARPS and ARPE from Table 5, reveal that structures are more misallocated than
equipment. To determine whether technological and informational frictions drive these
efficiency differences, we compute the MRPE and MRPS dispersion that each capital-type-
specific friction can generate by activating each channel while shutting down the others.
When we measure each channel’s contribution to misallocation, we keep the elasticity γ as
0.3. Figure 6 shows the results.

Figure 6: Comparing of E/S Frictions Contribution
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Note: This table presents the counterfactual total factor productivity (TFP) loss gener-
ated by each capital type-specific distortion/friction. AdjC refers to costs associated with
equipment and structures, Corr denotes correlated factors affecting equipment and struc-
tures, iid indicates transitory shocks to equipment and structures, ImpInf stands for im-
perfect information, and Perm refers to permanent factors.

40 What observations in the data support this conclusion? The dispersion moments in MRPE and MRPS from
the data are significant, theoretically attributable to adjustment costs, information friction, correlated fac-
tors, and two different types of shocks. However, the correlation between equipment/structure investment
growth and past period firm fundamentals is small, suggesting that information plays a limited role in ex-
plaining misallocation. Furthermore, the variance-covariance matrix of the idiosyncratic shock is also small,
limiting the role of the iid shocks. Additionally, the autocorrelation of the two assets is not substantial,
indicating that adjustment costs can explain some but not all of the misallocation. Moreover, there is no
high correlation between MRPE/MRPS and current firm-level fundamentals, suggesting that the two corre-
lated factors are not the main contributors. Therefore, the permanent shocks account for the majority of the
remaining misallocation.
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Technological/Informational Frictions. From Figure 6, the equipment adjustment cost
generates 0.05 of MRPE dispersion, while the structures adjustment cost generates 0.13 of
MRPS dispersion. However, the difference between these two values is small compared
to the variances of MRPES and MRPS measured directly from the data. For informational
frictions, the dispersion is roughly the same for both MRPE and MRPS, at approximately
0.03. Therefore, neither adjustment costs nor informational frictions significantly increase
the dispersion of MRPS compared to MRPE.

Residual Distortions. Focusing on the various components of the two residual distor-
tions, we find that the equipment correlated factor generates 0.07 of MRPE dispersion,
while the structures correlated factor has minimal impact. The structures transitory shocks
produce 0.32 of MRPS dispersion, nearly three times the 0.11 generated by equipment
transitory shocks. However, this difference remains insignificant compared to our obser-
vations from the data. In this analysis, two permanent factors are particularly influential.
The structures permanent factor accounts for 3.47 of MRPS dispersion, representing 95%

of the total MRPS dispersion observed. In contrast, the equipment permanent factor gen-
erates 1.09 of MRPE dispersion, which is 85% of the measured MRPE dispersion. Notably,
the difference in dispersion generated by these permanent factors aligns closely with the
differences measured directly from the data.

To summarize, throughout the quantitative exercises, we find that both adjustment
costs and imperfect information play only modest roles in explaining the additional mis-
allocation observed with smaller elasticity γ, as well as the efficiency differences between
equipment and structures. Given the significant impact of the two residual distortions, we
will further explore several potential economic forces that were not directly modeled in
our baseline model in the next section.

8 Candidates in the Residual Distortions

Following the misallocation literature, we primarily consider four candidates behind the
residual distortions: financial friction, taxation, heterogeneous technology, and measure-
ment errors. We abstract away from markups (Peters (2020)), as their contribution to aggre-
gate misallocation does not depend on γ when assuming markups arise from intermediate
inputs, and their effect is common to both equipment and structures.

8.1 Heterogeneous Financial Frictions

In our baseline model, we abstract away from financial frictions, as the literature has
shown that they have only a modest impact on aggregate misallocation (e.g., Midrigan
and Xu (2014)). However, heterogeneous financial frictions may help explain the efficiency
differences between structures and equipment, as researchers have documented that struc-
tures, such as real estate, face relatively small collateral constraints compared to equipment
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like machines (e.g., Ai, Li, Li, and Schlag (2020), Chaney, Sraer, and Thesmar (2012), and
Jermann (2010)).

We extend our model with heterogeneous financial friction by assuming that firms
need costly liquidity assets in order to operate production. Specifically, we assume a liq-
uidity cost

Y (Eit+1, Sit+1, Bit+1) = v̂Eωe
i,t S

ωs
i,t

(
Bi,t

Sit + Eit

)ωb

RBi,t (8.1)

where Bit refers to bond and R is the risk-free rate. The ratio of bonds to the sum of
equipment and structures denotes a firm’s leverage ratio. We assume ωb > 0, based on the
intuition that more leveraged firms face higher liquidity costs, conditional on having the
same stock of equipment and structures. The continuous functional form of this liquidity
cost allows us to still solve the model in a linear fashion. In the model equipped with this
financial friction, firms’ equipment and structures investment curvature will change.

The optimally condition (shown in Appendix F) for the bond demand yields the fol-
lowing structural regression that we can directly test from the dataset

log

(
Bit

Sit + Eit

)
= −ωe

ωb
logEit −

ωs
ωb

logSit + Constants (8.2)

where if we bring to the data, we regress the book values of equipment and structures on
firms’ ratio of bond over total fixed assets.

Table 7: Equip. & Struct. and Debt Leverage Ratio

log Debt
Capital log Debt

Capital log Debt
Capital log Debt

Sales log Debt
Sales

log(StructuresBook Value
it ) 0.0360∗∗∗ 0.0890∗∗∗ 0.1122∗∗∗ 0.1950∗∗∗

(0.0127) (0.0177) (0.0140) (0.0174)

log(EquipmentBook Value
it ) -0.0056 -0.0314 -0.0007 0.0543∗∗

(0.0142) (0.0243) (0.0156) (0.0236)

∆ log(StructuresBook Value
it ) 0.0874∗∗∗

(0.0182)

∆ log(EquipmentBook Value
it ) 0.0078

(0.0249)

Firm FE No Yes Yes No Yes

Sector-Year FE Yes Yes Yes Yes Yes

Observations 59,213 58,065 47,308 59,216 58,065
R2 0.210 0.677 0.239 0.279 0.703

Table 7 shows the results using Compustat data. In the first three columns, we use the
ratio of debt to total fixed assets as the dependent variable, and we also use the ratio of debt
to sales as a robustness check. The results indicate that firms holding more structures are
more likely to be financially leveraged. On the other hand, we do not find any correlation
between equipment holdings and the leverage ratio. The results are similar when using
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the ratio of debt to sales.
Bringing the reduced-form evidence into our structural model, we use the estimated

ω̂e
ωb

and ω̂s
ωb

to discipline the model. We consider these two moments to be most informative
about ωe and ωs. To infer the remaining two parameters, ν̂ and ωb, we use two alternative
moments from the production data: the variance of MRPE and MRPS growth (first order
difference).

Table 8: Estimation Results with Financial Friction

ξE ξS γE γS
0.2360 1.4069 -0.7689 -0.2891
σ2
ϵE σ2

ϵS covϵ V
0.0236 0.2292 -0.0735 0.0256
ν ωb ωe ωs

0.0320 0.0197 0.0006 -0.0017

Table 8 shows the estimation results. Consistent with our empirical results, even
though small, more structures holding will slightly decrease the liquidity costs while
equipment has the opposite and more modest effect. When comparing the generated
MRPE and MRPS, we find that the generated MRPS is larger with financial friction (4.08
vs. 3.64), while generated MRPE becomes smaller (1.28 vs. 1.07). However, the financial
friction will only change the aggregate TFP loss with a small scale (around 1%).

8.2 Tax: “Bonus” Depreciation

Tax policies could be a potential source of capital misallocation (Restuccia and Rogerson
(2017)). House and Shapiro (2008) and Zwick and Mahon (2017) have studied the “bonus”
depreciation policy, which allows firms to accelerate the schedule for deducting the cost of
investment purchases from taxable income. Specifically, let zN denote the stream of future
depreciation deductions owed for investment at sector N

zN =

T∑
t=0

1

(1 + r)t
Dt (8.3)

where Dt represent the allowable deduction per dollar of investment in period t, T denote
the asset’s class life, and r be the risk-adjusted discount rate used by the firm. The variable
zN captures the present discounted value of the pre-tax investment deductions for each
dollar invested.

Bonus depreciation enables a firm to deduct a bonus amount, denoted as θt, for each
dollar invested at the time of the investment. The remaining portion, 1− θt, is then depre-
ciated following the standard schedule

zNt = θt + (1− θt)zN (8.4)

which provides us the both the cross-sectional and time-series variation. The “bonus”
depreciation excludes most of the structures investment, which helps us to study how a
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single tax policy could potentially lead to difference in MRPE and MRPS dispersion.
We merge the “bonus” depreciation policy with the Compustat, and run the following

regression

∀k = e and s : log (mrpkit) = βk0 + βk3 log (zNt) · αki + δi + δN + δt + δN · δt︸ ︷︷ ︸
FEs

+εit; (8.5)

where αki is the firm-specific equipment and structures shares. The estimated β̂k3 can be
interpreted as: a positive βk3 means an increase in log(zNt) leads to a greater increase in
log(mrpkit) for firms with larger αki . From the results, we estimate a β̂e3 = −0.049∗∗ and
a β̂s3 = 0.176∗∗∗, indicating that this tax policy will be likely to make equipment less mis-
allocated than structures in terms of magnitude. In order to better map the tax-induced
misallocation into welfare loss, we run the following regression

var(arpk)Nt = β0 + β1 · zNt + δN + δt + εNt (8.6)

which allows us to directly identify the amount of ARPE and ARPS variances correlated
with the policy.

Table 9: ARPE & ARPS Variance Induced by “Bonus” Depreciation Policy

var(arpe) var(arps)

log(zNt) 18.735 42.577∗∗

(11.234) (14.953)

Observations 320 320
R2 0.767 0.634
Sector FE Yes Yes
Year FE Yes Yes

Note: the standard errors are clustered at the sector level.

Table 9 shows the results with sectors whose the number of firms is more than 40. We
can see that the results do not suggest that the “Bonus” depreciation policy has a significant
impact on the ARPE dispersion. However, it does increase the ARPS dispersion.

8.3 Contribution of Heterogeneous Techniques to Misallocation

In both of our static framework and dynamic model, we assume that firms in the same
sector use the same production technology. A potential concern of disaggregating capital
will be the heterogeneity in equipment/structures elasticity. Even though not perfect, we
use different methods in both static and dynamic framework to measure the contribution
of equipment/structures heterogeneity on misallocation.

Extensive Margin: Heterogeneous Techniques. In static framework, we group firms
that use different types of capital together in the same sector, then allow firms in differ-
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ent groups within the same sector have different production technology.41 For example,
under the manufacturing sector, one group of firms contains firms using only machinery
and building in their production, while another group contains firms that only use ma-
chinery, building, and transportation.42

Figure 7: Measured AE with Heterogeneous Technoques

Note: The above figures show the measured allocative efficiency with heterogeneous tech-
niques. The first panel provides the time series evidence for AE, while the second panel
shows how AE changes with different values of the elasticity of capital substitution.

The left figure in Figures 7 shows the results of our measurement with γ = 1.4. We still
consistently measure a difference between homogeneous and heterogeneous capital from
5.30% to 12.23% depending on different years. Moreover, in the right hand side of Figure
7, we can see that when Convention 1 does not hold (due to heterogeneous technology
with a sector), measured allocative efficiency still increases with the value of γ. This shows
the robustness of our empirical measurement results and the claim of underestimation of
misallocation costs in conventional models.

Intensive Margin: Estimating Heterogeneous Input Elasticities. We follow Salgado,
Ozkan, Hubmer, Hong, and Chan (2024) to directly identify the heterogeneous produc-
tion elasticity at the firm-year level using the Gandhi et al. (2020) estimator (henceforth
GNR). We assume that equipment (eit) and structures (sit) are dynamic inputs in produc-
tion, while cost-of-goods-sold is the flexible input.

41 This actually also solves some caveats of our empirical measurements. Firstly, there might be sample selec-
tion bias. As we disaggregate the total fixed asset into more and more different types of assets, the number
of surviving observations—those with non-zero reported usage on all types of assets—declines. We have to
drop the firms that have missing values or do not use all of the assets; otherwise, the measured firm-level
productivity will be biased. Eventually, when we measure using six assets, almost sixty percent of the ob-
servations in the sample are dropped. More importantly, we found that mostly large firms tend to use all six
types of assets, so it is very likely that we are only measuring the cost of misallocation among large firms.
Finally, since different firms use different types of assets, a harmonized method of measurement is in need
to compute allocative efficiency.

42 It is worth noting that in this setting, our Convention 1 will no longer hold, since firms have different
production functions in the same sector. We solve the static model to measure the efficient capital allocation
in this economy: by fixing the supply of all assets and labor, we guess the prices iteratively until all factor
markets clear.
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The production function estimation methodology developed by GNR offers several ad-
vantages that are particularly attractive for our problem. First, the elasticity estimates are
robust to potential adjustment costs in the investment process, as demonstrated by GNR’s
Monte Carlo exercises. Second, it offers a consistent estimation of the input elasticities as
long as the evolution of firm-specific input prices follows a time-varying Markov process,
as shown by Luparello (2023), which nests the stochastic processes for input distortions in
our model. Lastly, the GNR estimator yields a heterogeneous production elasticity at the
firm-year level. Not only does it recover the average elasticity, but it also provides accurate
estimates for the dispersion of input elasticities across firms, the key object of our interest.

Applying the GNR method, we recover substantial within-sector-year heterogeneity
in the (log) of equipment and structure input elasticities, with Var(α̃Eit) = 5.28 and
Var(α̃Sit) = 13.35. However, the large measured technology dispersion does not mean that
our baseline measurements overstate the measured misallocation. In fact, the dispersion
of α̃Eit and α̃Sit explains less than 2% of the variation in the mrpeit and mrpsit computed
with our baseline model. After adjusting for the estimated heterogeneous input elastici-
ties, the measured σ2mrpe and σ2mrps are 2.20 and 7.97, respectively, which are almost twice
as large as our baseline estimates. The correlated distortion σmrpe,mrps is now measured
to be more negative, at -2.69. Together, our results suggest that accounting for the hetero-
geneity in production technology would result in an even larger measured misallocation
loss than our baseline.

Intensive Margin: Heterogeneous Factor-Augmenting Productivity As an alternative
method, we follow one way prposed in David and Venkateswaran (2019) in order to iden-
tify the effect of heterogeneous technology. The details can be found in Appendix G and
we sketch the main processes here. First of all, we can assume that τEit = τSit = τNit , which
in the first order implies

arpeit − arpnit =

1
γκ

γ−1
γ

(
1− 1

αE

) 1
γ
−1

1
αE

1 +
(
1−αE
αE

) 1
γ
κ

γ−1
γ

α̃Eit +
(1− 1

γ )κ
1− 1

γ

(
1
αE

− 1
) 1

γ

1 +
(
1−αE
αE

) 1
γ
κ

γ−1
γ

κ̃it + constant

(8.7)

or

arpsit − arpnit =

1
γκ
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1
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− 1
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(8.8)

where κ̃it is firm-level equipment/structures ratio and κ is its deterministic steady state.
arpeit, arpsit and κ̃it can all be computed from data so that we can calculate the variance of
α̃Eit. Applying this method in US Compustat data, we compute variances of α̃Eit, α̃Sit and
their covariance. We found that the loss of misallocation which heterogeneous elasticity
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can generate is 0.018%, which is tiny compared to the number of the underestimation.

8.4 Measurement Errors

Measurement error is a common concern about measuring capital misallocation. Take it
to our case, the concern is that will the measurement error be larger when using the more
detailed, disaggregating capital data. We follow the empirical strategy developed in Bils
et al. (2021) to estimate the role of additive measurement error in our empirical results.
Specificallly, we run the following regression

∆pyit = β0 + β1 · tfprit + β2 ·∆Iit − β2(1− β3)tfprit ·∆Iit +Djt + εit, (8.9)

in which ∆pyit and ∆Iit are firm revenue and inputs changes. The independent vari-
able tfprit is refereed to firm level revenue TFP (in logarithm) following the definition in
equation (3.1). Djt captures industry-year fixed effects. The basic idea behind this identi-
fication is that conditional on the same TFPR, the relative growth rate of firm revenue to
input can be used to identify the addictive measurement error, under certain assumptions
43. In equation (8.9), β3 means the ratio of the true dispersion of TFPR to its measuement
counterpart (with measurement errors).

We try two different specification to test if we encounter greater measurement errors
with using more disaggregated data. We first use each individual type of capital (e.g.
equipment or structure) as the input ∆Iit, and compared the estimated β3 when using
total fixed assets as the input as in David and Venkateswaran (2019). This exercise will
tell whether different types of capital themselves have more measurement errors. In the
second specification, we combine different types of capital and labor as the input bundle,
and test whether it has more measurement errors than the input bundles in Bils et al. (2021).

The results from our first specification show that in the US, using the equipment or
structures alone to measure capital misallocation do not suffer more measurement errors
compared to using total fixed asset. Using the Compustat data, we estimated a βe3 = 0.11

for equipment, βs3 = 0.07 for structures and βk3 = 0.12. The results from our second speci-
fication show that βes bundle

3 = 0.11 when γ = 0.3, not significantly different from using the
total fixed assets. As a concern raised in Bils et al. (2021) that non Cobb-Douglas produc-
tion function might bias the result, we also try to measure it by assuming γ = 1 and the
results are similar.

8.5 Robustness: Estimating with Varied Moments

We show the estimation of adjustment costs, imperfect information and investment
wedges cause loss of aggregate TFP with changed moments in Table 10. Specifically, we

43 In order to use this empirical specification, we follow the assumptions in Bils et al. (2021). Except for that
measurement errors are additive, we need to assume that their role in a plant’s TFPR is orthogonal to its
true wedge distortions. Moreover, we assume the addictive measurement errors affect all inputs the same.
Finally, we also need to assume that productivity, distortion wedges and measurement errors are i.i.d., and
they are evaluated in first-order approximation.
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re-measure firm-level productivity for each value of γ, and generate moments accordingly,
and estimate the model with each γ and moments pairs.

Table 10: Contributions of Frictions on Aggregate Productivity (US) with Changed Mo-
ments

τE+S

Elasticity of Substitution ξE+S V γE+S εE+S χE+S ∆a

γ = 4 3% 0% 10% 1% 9% 14%

γ = 1 2% 1% 1% 2% 14% 19%

γ = 0.3 3% 0% 9% 1% 16% 21%

From the results, the contribution of adjustment costs and imperfect information are
still quite stable with different numbers of γ and moments. The correlated and transitory
factors might vary a lot across different specification, however, we still estimate variances
of permanent factors steadily increase with smaller number of γ. This indicates that chang-
ing moments accordingly will not change our main results.

8.6 Robustness: Estimation Using India ASI Data

We also apply India ASI data to our model to examine if adjustment costs and imperfect
information can explain any extra misallocation measured by finite elasticity of equip-
ment and structures substitution. We follow the main procedure in the baseline estima-
tion, keeping the moments fixed and estimate the model with γ = 0.3, 1 and 4. Results are
attached in Table 11.

Table 11: Contributions of Frictions on Aggregate Productivity (India)

τE+S

Elasticity of Substitution ξE+S V γE+S εE+S χE+S ∆a

γ = 4 4% 1% 2% 0% 34% 41%

γ = 1 4% 1% 3% 0% 33% 43%

γ = 0.3 4% 1% 1% 0% 47% 54%

Similar to the results in the US, the extra TFP loss induced by smaller number of γ can
not be explained by the adjustment costs and imperfect information: across different γ,
adjustment costs and imperfect information constantly contribute 4% and 1% unit of TFP
loss. Different from the US, the aggregate TFP loss is significant larger than that of the US.

9 Conclusions

In this paper, we formalize the role of capital heterogeneity in studying capital misalloca-
tion. We propose a new framework which captures the heterogeneity and interactions of
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distortions among different capital types. Formally, we show that ignoring assets hetero-
geneity leads to an underestimate measure of capital misallocation, ranging from to 2%
to 26% of TFP loss in different countries. Finally, to investigate the mechanisms behind
heterogeneous asset-specific misallocation and their joint effect on the aggregate economy,
we construct and estimate a firm dynamics model with two categories of capital: equip-
ment and structure. Quantitative analysis reveals the importance of equipment-specific
adjustment cost and firm-specific permanent distortions.

Although not explicitly discussed, the policy implications of this paper is clear. As dif-
ferent types of assets face distortions of different nature, any asset-neutral policy to incen-
tives the firm’s investment might not be optimal. Our analysis entails that policies that are
targeted to reduce frictions in the equipment market should be key to improve allocative
efficiency. Moreover, as the model only focuses on explaining the average misallocation
across years, the increasing trend of capital misallocation is left unexplained. Future work
should be directed to explaining the asset-origin of rising misallocation in the U.S. and
provide better understanding of the mechanisms at play.
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Appendices

Online Appendix (Not for Publication)

A Measurement Framework with Multiple Types of Capital

A.1 Static Measurement Framework

We solve firm’s profit maximization problem with a CES demand in a static environment
now. As it’s shown in section 2, firm’s profit maximization problem is given by

max
{Pi,Yi,Kmi,Li}

(1 + τY i)PiYi −
M∑
m=1

(1 + τKmi)RmKmi −WLi,

subject to : Yi = Y

(
P

Pi

)σ
.

The dual cost minimizing problem of firm’s profit maximization can be given by

C(Yi) ≡ min
{{Kmi}m=M

i=1 ,Li}

 M∑
m=1

(1 + τKmi)RmKmi +WLi

∣∣∣∣∣Ai
(

M∑
m=1

α
1
γ
mK

γ−1
γ

mi

) γ
γ−1

α

L1−α
i = Yi

 .
By simply assuming thatRK =

∑M
m=1 (1 + τKmi)RmKmi andK =

(∑M
m=1 α

1
γ
mK

γ−1
γ

mi

) γ
γ−1

,

we can directly borrow the cost function from Cobb-Douglas and CES production function
to solve for the cost minimization problem

CYi (K1i,K2i, ...,Kmi, Li) =
1

Ai


[∑M

m=1 αm ((1 + τKmi)Rm)
1−γ
] 1

1−γ

α


α

·
(

W

1− α

)1−α
.

(A.1)

Firm i chooses its price Pi by exerting its constant markup on the cost

Pi =
σ

σ − 1

1

Ai


[∑M

m=1 αm ((1 + τKmi)Rm)
1−γ
] 1

1−γ

α


α

·
(

W

1− α

)1−α
. (A.2)

We also know from the CES demand that PiYi = PY
1
σ Y

1− 1
σ

i , and plug it into the firm’s
problem

max
{Pi,Yi,Kmi,Li}

(1 + τY i)PY
1
σ Y

1− 1
σ

i −
M∑
m=1

(1 + τKmi)RmKmi −WLi.
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In a static measurement framework, the aggregate price and output, P and Y , are con-
stants. Hence, the FOC wrt. different types of capital and labor are given by

FOCs [Kmi&Kni] :
αn
αm

[
Rm(1 + τKmi)

Rn(1 + τKni)

]γ
=
Kni

Kmi
(A.3)

To see how the elasticity affects the use of Kmi, let the total expenditure in capital RK =∑M
m=1RmKmi and the capital bundle K =

(∑M
m=1 α

1
γ
mK

γ−1
γ

mi

) γ
γ−1

. The share of Kmi on K

follows

Kmi(∑M
n=1 α

1
γ
nK

γ−1
γ

ni

) γ
γ−1

=
Kni

1
R

∑M
m=1RmKm

= αm

 Rm (1 + τKmi)(∑M
n=1 αnR

1−γ
n (1 + τKni)

1−γ
) 1

1−γ


−γ

.

(A.4)

A.2 Example: Cobb-Douglas Special Case γ = 1

To better understand how input distortions affect allocative efficiency, we now consider
a simple example with γ = 1. This is a tractable special case where a closed-form aggre-
gate production function exists for a distorted economy, and how distortions might lower
aggregate productivity could be made very transparent. In this case, different capital in-
puts are neither complements nor substitutes. The firm’s production function becomes
Cobb-Douglas in all its inputs:

Yi = L1−α
i

(
ΠMm=1K

αm
mi

)α
(A.5)

In the distorted economy, we have the allocation of m-th type capital inputs satisfy:

Kmi ∝
1

(1 + τKmi)

[
Ai

(1 + τLi)
(1−α)ΠMn=1 (1 + τKni)

αnα

]σ−1

, (A.6)

where the quantity ofKmi is inversely proportional with the its type-specifc capital wedge,
(1 + τLi), and is proportional to the wedge-adjusted TFP. This is in stark contrast of the effi-
cient allocation described in Lemma 1. Here, not only the wedge onm-th capital will lower
the firm i’s demand onm-th capital, the input wedges of other factors will also proportion-
ally lower i’s demand on m-th capital due to the Cobb-Douglas nature of production. By
building upon the firm-level equilibrium input choices and factor market clearing condi-
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tions, we can easily derive the aggregate production function as the following:

Y = TFP ·
M∏
m=1

Kαm
m L1−α, (A.7)

TFP =

 N∑
i=1

(
Ai

1

(1 + τLi)
1−α∏M

m=1 (1 + τKmi)
αmα

)σ−1
 1

σ−1

. (A.8)

where the aggregate output Y , is determined by the aggregate TFP, along with the total fac-
tor supplies. Furthermore, we can see that the aggregate TFP, accounts for the combined
effects of technology and the distortions associated with different inputs. Let us focus on
the capital distortions here. The component

∏M
m=1 (1 + τKmi)

αmα captures the firm-level
total effect of distortions related to different capital types. Each capital type is subject to
its own distortion. The net effect of these distortions on TFP depends on the relative im-
portance of each capital type (captured by αm) and the size of the distortion itself. If the
distortion (τKmi) is significant for a particularly crucial capital type m, it can considerably
dampen the TFP, thereby reducing aggregate productivity. Also, it is particularly dam-
aging when the distortion is paired with a firm with higher productivity (Ai) as it would
drag the aggregate productivity further away from the efficient frontier.
The allocative efficiency in this economy also takes a closed form:

AE =
Y

Y e
=

TFP

TFP e
=

(∑N
i=1

(
Ai

(1+τLi)
1−α ∏M

m=1(1+τKmi)
αmα

)σ−1
) 1

σ−1

(∑N
i=1A

σ−1
i

) 1
σ−1

(A.9)

In the Cobb-Douglas context, the allocative efficiency metric assesses the extent to which a
sector’s actual TFP diverges from its efficiency frontier. Notably, these distortions influence
the aggregate TFP, thereby diminishing the overall efficiency with which aggregate inputs
are transformed into output.

A.3 Proof of Lemma 1

The proof is of two parts. First of all, we derive the optimal allocation of capital and labor
in a static environment, then show the aggregation production function of the economy.
We start our first part of proof from a firm’s profit maximization problem. Firm i’s capital
and labor hiring problem is given by the following optimization problem:

max
{K1i,K2i,...,KMi,Li}

PiYi −
M∑
m=1

RmKmi −WLi (A.10)
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where the first order conditions are:

FOC [Kmi] : PiYi · αα
1
γ
m ·

K
− 1

γ

mi∑M
m=1 α

1
γ
mK

γ−1
γ

mi

= Rm, ∀m ∈ {1, 2, ...,M} (A.11)

FOC [Li] : Pi
Yi
Li

(1− α) =W (A.12)

Combining the FOC w.r.t two different kinds of capital we can achive the following optimal
capital ratio equation:

K1i

Kmi
=

(
Rm
R1

)γ
· αm
α1

=
K1

Km
(A.13)

Since in such an environment, the aggregate type specific capital and labor supply are
determined beforehand, the optimal capital ratios are always constant. Moreover, we can
rewrite firm i’s production technology Yi as:

Yi = Ai

(
M∑
m=1

α
1
γ
mK

γ−1
γ

mi

) γ
γ−1

α

L1−α
i

= Ai

[
M∑
m=1

α
1
γ
m

(
Kmi

K1i

) γ−1
γ

] γ
γ−1

α

Kα
1i · L1−α

i

= Ai

[
M∑
m=1

α
1
γ
m

(
Km

K1

) γ−1
γ

] γ
γ−1

α

Kα
1i · L1−α

i (A.14)

Then, the social planner’s problem is give by:

max
{{Kmi}Mm=1,Li}

Y =

(
N∑
i=1

Y
σ−1
σ

i

) σ
σ−1

s.t.
N∑
i=1

K1i = K1,
N∑
i=1

Li = L

The Lagrangian is followed by:

L = Y + λ1

(
K1 −

N∑
i=1

K1i

)
+ µ

(
L−

N∑
i=1

Li

)
(A.15)

First order condition w.r.t. K1i and Li are given by:

Y
1
σ Y

1− 1
σ

i αK−1
1i = λ1

Y
1
σ Y

1− 1
σ

i (1− α)L−1
i = µ (A.16)
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Combine FOC [K1i] and [K1j ]:

K1i

K1j
=

(
Yi
Yj

)1− 1
σ

=

(
Ai
Aj

)(σ−1)

(A.17)

Finally, it is straightforward to see that Li
Lj

= K1i
K1j

, and we plug these optimal conditions
into our budget constraints:

N∑
i=1

(
Ai
Aj

)(σ−1)

K1j = K1 ⇒ K1j =
Aσ−1
j∑N

i=1A
σ−1
i

K1 (A.18)

which completes the first part of the proof of Lemma 1. For the second part, we need derive
the aggregate production function that under the optimal capital and labor allocations. To
show this, we plug the optimal capital and labor decision in firm i’s production function:

Yi = Ai

(
M∑
m=1

α
1
γ
mK

γ−1
γ

mi

) γ
γ−1

α

L1−α
i

= Ai

 M∑
m=1

α
1
γ
m

(
Aσ−1
i∑N

j=1A
σ−1
j

Km

) γ−1
γ


γ

γ−1
α(

Aσ−1
i∑N

i=1A
σ−1
j

L

)1−α

=
Aσi∑N

j=1A
σ−1
j

(
M∑
m=1

α
1
γ
mK

γ−1
γ

m

) γ
γ−1

α

L1−α (A.19)

The final good producer aggregates all intermediate good to generate the final good by:

Y =

(
N∑
i=1

Y
σ−1
σ

i

) σ
σ−1

=

 N∑
i=1

 Aσi∑N
j=1A

σ−1
j

(
M∑
m=1

α
1
γ
mK

γ−1
γ

m

) γ
γ−1

α

L1−α


σ−1
σ


σ

σ−1

=

(
N∑
i=1

Aσ−1
i

) 1
σ−1

(
M∑
m=1

α
1
γ
mK

γ−1
γ

m

) γ
γ−1

·α

(A.20)

where
(∑N

i=1A
σ−1
i

) 1
σ−1 is just the efficient level productivity TFP e. This completes our

second part of proof of Lemma 1.

A.4 Proof of Lemma 2

We aim to prove that the measured firm-level TFP will decrease with the chosen elasticity
of capital substitution γ. The set of production technology that we are interested in is as
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the following form:

Yi = Ai

(
M∑
m=1

α
1
γ
mK

γ−1
γ

mi

) γ
γ−1

α

L1−α
i , ∀M ∈ {1, 2, 3, ...} (A.21)

We neglect time t and i here since our framework is purely static and focus on one indi-
vidual firm. Apparently, we only need to know the sign of:

∂Ai
∂γ

=

∂

(∑M
m=1 α

1
γ
mK

γ−1
γ

mi

) γ
γ−1

∂γ

=

∂

(∑M−1
m=1 α

1
γ
mK

γ−1
γ

mi + αM

) γ
γ−1

KMi

∂γ
(A.22)

Notice that we can rescale Kmi such that α
1
γ
mK

γ−1
γ

mi = αmK̃
γ−1
γ

mi . We set x = γ−1
γ , then

compute:

∂
(∑M−1

m=1 αmK
x
m + αM

) 1
x

∂x
= exp

[
1

x
ln

(
M−1∑
m=1

αmK
x
m + αM

)]

·

[
− 1

x2
ln

(
M−1∑
m=1

αmK
x
m + αM

)
+

1

x

1∑M−1
m=1 αmK

x
m + αM

(
M−1∑
m=1

αmK
x
m ln(Km)

)]

∝ x ·

(
M−1∑
m=1

αmK
x
m ln(Km)

)
−

(
M−1∑
m=1

αmK
x
m + αM

)
· ln

(
M−1∑
m=1

αmK
x
m + αM

)

= −
M−1∑
m=1

αmK
x
m ln

(∑M−1
m=1 αmK

x
m + αM

Kx
m

)
− αM ln

(
M−1∑
m=1

αmK
x
m + αM

)
(A.23)

Using the fact that log(x) ≤ x− 1, we have:

∂
(∑M−1

m=1 αmK
x
m + αM

) 1
x

∂x
≥

M−1∑
m=1

[
αmK

x
m

(∑M−1
m=1 αmK

x
m + αM

Kx
m

− 1

)
+ αM

(
M−1∑
m=1

αmK
x
m + αM − 1

)]
(A.24)

If we simplify the right hand side of above equation, we will find that it is just zero. Hence,
we have proved that:

∂Ai(D,P, γ)
∂γ

=
∂

∂γ

 R
σ

σ−1

i(∑M
m=1 α

1
γ
mK

γ−1
γ

mi

) γ
γ−1

α

L1−α
i

 ≤ 0, ∀D,P and i. (A.25)
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A.5 Proof of Proposition 1

First, we note that the ratio of the measured allocative efficiency for two different elastici-
ties of substitution of capital, γ′ > γ, can be written as:

AE(γ)

AE(γ′)
=

Y
Y e(γ)

Y
Y e(γ′)

=
Y e(γ′)

Y e(γ)

As the measured aggregate output Y is the same for both choices of elasticity of capital
substitution (from the same data D) , what matters for the AE measurement in the two
different cases are the difference in the efficient counterfactual Y e(γ) and Y e(γ′). Using
Lemma 2, since the efficient aggregate production function takes the following form,

Y e(γ) = TFP e ·

(
M∑
m=1

α
1
γ
mK

γ−1
γ

m

) γ
γ−1

·α

Lα,

we can derive that:

AE(γ)

AE(γ′)
=
Y e(γ′)

Y e(γ)
=

(∑N
i=1Ai(γ

′)σ−1
)1/(σ−1)

(∑N
i=1Ai(γ)

σ−1
)1/(σ−1)

︸ ︷︷ ︸
Productivity Effect

(∑M
m=1 α

1
γ′
mK

γ′−1
γ′

m

) γ′
γ′−1

·α

(∑M
m=1 α

1
γ
mK

γ−1
γ

m

) γ
γ−1

·α

︸ ︷︷ ︸
Aggregate Input Effect

There are two effects on determining the direction of measurement: (1) productivity effect
and (2) aggregate input effect. We now analyze these two effect separately:

Productivity Effect Lemma 1 established that the measured firm-level productivity
Ai(D,P, γ) is decreasing with the choice of elasticity of capital substitution γ, ∂Ai(D,P,γ)

∂γ ≤
0. Therefore we have that for every firm i, since γ′ > γ,

Ai(γ
′) < Ai(γ).

Since each element of the sum in the measured efficient aggregate productivity function(∑N
i=1Ai(γ

′)σ−1
)1/(σ−1)

is smaller than
(∑N

i=1Ai(γ)
σ−1
)1/(σ−1)

, we must also have the
measured aggregate efficient productivity is increasing in the choice of elasticity of capital
substitution γ:

(
N∑
i=1

Ai(γ
′)σ−1

)1/(σ−1)

<

(
N∑
i=1

Ai(γ)
σ−1

)1/(σ−1)

,∀γ′ > γ.

Using the fact that γ ∈ (0,∞) and supγ = ∞, we must have that for any finite γ,
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(
N∑
i=1

Ai(γ)
σ−1

)1/(σ−1)

> lim
γ→∞

(
N∑
i=1

Ai(γ
′)σ−1

)1/(σ−1)

,

which implies that a researcher that assumes heterogeneous capital must always measure
a higher level of efficient aggregate productivity than one assumes homogeneous capital.

Aggregate Input Effect If we do not assume Convention 1, we have that for γ < γ′:

(∑M
m=1 α

1
γ
mK

γ−1
γ

m

) γ
γ−1

·α

(∑M
m=1 α

1
γ′
mK

γ′−1
γ′

m

) γ′
γ′−1

·α
≤ 1.

This is obvious since for the given capital quantity Km, the larger the flexibility in produc-
tion, the larger the aggregate input bundle would be. However, under our measurement
Convention 1 where αm = Km∑

mKm
, we have that the size of the aggregate input bundle

does not depend on the assumed elasticity γ:

(
M∑
m=1

α
1
γ
mK

γ−1
γ

m

) γ
γ−1

·α

=

(
M∑
m=1

α
1
γ′
mK

γ′−1
γ′

m

) γ′
γ′−1

·α

=

(
M∑
m=1

Km

)α

Therefore, the aggregate input effect is completely muted under Convention 1.
We now summarize our analysis of the two effects,

AE(γ)

AE(γ′)
=

(∑N
i=1Ai(γ

′)σ−1
)1/(σ−1)

(∑N
i=1Ai(γ)

σ−1
)1/(σ−1)

︸ ︷︷ ︸
Productivity Effect<1

(∑M
m=1 α

1
γ′
mK

γ′−1
γ′

m

) γ′
γ′−1

·α

(∑M
m=1 α

1
γ
mK

γ−1
γ′
m

) γ
γ−1

·α

︸ ︷︷ ︸
Aggregate Input Effect=1

< 1,

and the measured AE will always be larger for the researcher that assumes a higher degree
of elasticity of substitution γ′ > γ. Taking γ′ to infinity, we arrive at

AE(γ,D,P) < lim
γ→∞

AE(γ,D,P),

which concludes the proof of the proposition.
The easiest way to see this is that, pick random γ and γ′, sastifying that γ ≤ γ′. From
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proposition 1 we can see that:

AE(γ)

AE(γ′)
=

(∑N
i=1Ai(γ

′)σ−1
)1/(σ−1)

(∑N
i=1Ai(γ)

σ−1
)1/(σ−1)

︸ ︷︷ ︸
Productivity Effect<1

(∑M
m=1 α

1
γ′
mK

γ′−1
γ′

m

) γ′
γ′−1

·α

(∑M
m=1 α

1
γ
mK

γ−1
γ′
m

) γ
γ−1

·α

︸ ︷︷ ︸
Aggregate Wedge Effect=1

< 1

and this completes the proof.

A.6 Proof of Corollary 1

We need to show that finer disaggregation of capital leads to the smaller number of mea-
sured allocative efficiency and larger welfare loss. Compare two situations, one withM−1

types of capital, {K1,K2, ...,KM−2,KM−1}, and another with disaggregating the M − 1-
type capital into K ′

M−1 and KM , where K ′
M−1 + KM = KM−1. In the first situation, the

researcher is not aware of the fact that M − 1-th type of capital can be further disaggre-
gated. Nevertheless, in either situation, the researcher can assign the correct weight fol-
lowing convention 1. From a researcher’s perspective, their productivities in two different
scenarios should be defined as following:

A =
R

σ−1
σ(∑M−2

m=1 α
1
γ
mK

γ−1
γ

m + α
1
γ

M−1K
γ−1
γ

M−1

) γ
γ−1

α

L1−α

(A.26)

A′ =
R

σ−1
σ(∑M−2

m=1 α
1
γ
mK

γ−1
γ

m + α
′ 1
γ

M−1K
′ γ−1

γ

M−1 + α
1
γ

MK
γ−1
γ

M

) γ
γ−1

α

L1−α

(A.27)

To tell the difference between A and A′, we only need to compare α
1
γ

M−1K
γ−1
γ

M−1 and

α
′ 1
γ

M−1K
′ γ−1

γ

M−1 + α
1
γ

MK
γ−1
γ

M . We assume γ > 1 at this moment, but the proof still holds other-
wise. When the researcher fails to recognize the fact thatKM−1 can be further decomposed,
they basically assume that K ′

M−1 +KM = KM−1. Now, let us compare these two different
ways of aggregation and their affect on measuring productivity:

KM−1 = K ′
M−1 +KM ; (A.28)

KM−1 =

[(
α′
M−1

αM−1

) 1
γ

K
′ γ−1

γ

M−1 +

(
αM
αM−1

) 1
γ

K
γ−1
γ

M

] γ
γ−1

(A.29)

where
(
α′
M−1

αM−1

)
+
(

αM
αM−1

)
= 1. Following our proposition 1, we can see that until γ → ∞,

the CES aggregation is always smaller than linear summation. Hence, we conclude that
A ≤ A′, which eventually leads to our proposition 3.
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A.7 Proof of Proposition 2

(1) AE in a Multi-sector Economy with Sector-specific Factors Formally we need to
show the following statement:
For a multi-sector economy with S distinct sectors and only sector-specific factors , con-
sider a dataset Ds = (Rs, Ls, {Kms}Ms

m=1)Ns ∀s ∈ S, and fixed model parameters for
each sector Ps = (σs, αs, {αms}Ms

m=1): Under Convention 1, the the total allocative effi-
ciency in the multi-sector economyAE calculated from a model with homogeneous capital
(γs → ∞) is larger than the AE calculated from a model with heterogeneous capital with
sector-specific elasticity of substitution (any finite γs):

AE({γs}Ss=1, {Ds}Ss=1, {Ps}Ss=1) < lim
γs→∞,∀s

AE({γs}Ss=1, {Ds}Ss=1, {Ps}Ss=1)

We can easily establish this by applying Proposition 1 to this economy. Under Convention
1 and sector-specific factor supply, which implies no aggregate wedges, the Allocative Effi-
ciency AEs for each sector s calculated from a model with homogeneous capital (γs → ∞)

is larger than the AEs calculated from a model with heterogeneous capital with sector-
specific elasticity of substitution (any finite γs ):

AEs (γs,Ds,Ps) < lim
γs→∞

AEs (γs,Ds,Ps)

for all s = 1, . . . , S, as long as γs is well-defined for each sector s. Further, the overall
allocative efficiency in the multi-sector economy AE is given by

AE =
Y

Y e
= ΠSs=1AE

θs
s

. Using the sectoral AE inequalities implies that the product of the larger sides of the
ineuqlaitieis must be larger than the product of the samller sides of the inequalities:

S∏
s=1

AEs (γs,Ds,Ps) < lim
γs→∞,∀s

S∏
s=1

AEs (γs,Ds,Ps)

This means we must have:

AE({γs}Ss=1, {Ds}Ss=1, {Ps}Ss=1) < lim
γs→∞,∀s

AE({γs}Ss=1, {Ds}Ss=1, {Ps}Ss=1)

(2) AE in Multi-sector Economy with Production Network Except for the multi-sector
setting, we now adding production network in our framework, in the spirit of Hang, Kr-
ishna and Tang (2020). For each sector s, market clearing for sectoral output implies

Ys = Cs +Ms (A.30)

where Ms is the intermediate input that sector s provides for productions of rest sectors.
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The final product Y is produced by a representative firms according to

Y =
S∏
s=1

Cθss , with
S∑
s=1

θs = 1 (A.31)

Lastly, firm i’s production function now is given by:

Ysi = Asi

( M∑
m=1

α
1
γs
smK

γs−1
γs

smi

) γs
γs−1

αs

L1−αs
si

1−σs

·

 S∏
q=1

M
λqs
qsi

1−δs

, ∀M ∈ {1, 2, 3, . . .}

(A.32)

whereMqsi denotes the intermediate good that firm i in sector s purchase from sector q. λqs
implies the production share. Following the same logic, we can see that our lemma 2 still
holds, since the production network has no correlation with the elasticity of substitution
across different types of capital. Hence, our proposition 1, 2 and 3 still hold following
lemma 2 with production function. This completes our proof.

A.8 Derivation of the Welfare Cost Formula

From D. R. Baqaee and Farhi (2020), the second-order welfare loss of distortions around
the optimal allocation for each sector (sector index s is omitted) is:

∆ log TFP =
1

2
σV arλ [(1− α) log(1 + τLi) + ααE log(1 + τEi) + ααS log(1 + τSi)]

+
1

2
α(1− α)V arλ [αE log(1 + τEi) + αS log(1 + τSi)− log(1 + τLi)]

− 1

2
γααEαSV arλ [log(1 + τEi)− log(1 + τSi)]

(A.33)

where αE =
α

1
γ
EE

γ−1
γ

α
1
γ
EE

γ−1
γ +α

1
γ
S S

γ−1
γ

and αS =
α

1
γ
S S

γ−1
γ

α
1
γ
EE

γ−1
γ +α

1
γ
S S

γ−1
γ

are the equilibrium expenditure

share on E and S in efficient equilibrium, and λi =
PiYi
PY is the sales share/ Domar weight

of firm i.
Rearranging terms yields

∆ log TFP =
(σ − 1)α2α2

E + α(α2
E + γαEαS)

2
V arλ [log(1 + τEi)]

+
(σ − 1)α2α2

S + α(α2
S + γαEαS)

2
V arλ [log(1 + τSi)]

− ααEαS (γ − σα− (1− α))Covλ [log(1 + τEi), log(1 + τSi)] ,

and aggregating across sectors yields the formula in 3.
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A.9 Welfare Costs in the Structural Model

In the log-linearized model, in the efficient allocation in the model’s stochastic steady state,
we have a ∼ N(0, σ2a). Therefore, we have:

λi =
PiYi∑
i PiYi

=
Aσ−1
i

EiAσ−1
i

=
exp[(σ − 1)ai]

Ei[exp[(σ − 1)ai]]
=

exp[(σ − 1)ai]

exp[12(σ − 1)2σ2a]

With both mrpei and mrpsi are log-normally distributed and correlated with ai, we now
compute:

Eλ[mrpe2i ] =
1

exp[12(σ − 1)2σ2a]
E[exp[(σ − 1)ai]mrpe

2
i ]

=
1

exp[12(σ − 1)2σ2a]

∫
mrpe2e(σ−1)a

2π
√
σ2aσ

2
mrpe − 2σmrpe,a

e
−(

σ2
mrpea

2+σ2
amrpe2−2σmrpe,aa·mrpe)

2(σ2
aσ2

mrpe−2σmrpe,a) (da)(dmrpe)

= σ2mrpe + (σ − 1)2σ2mrpe,a

Similarly, we have that:

Eλ[mrpei] =
1

exp[12(σ − 1)2σ2a]
E[exp[(σ − 1)ai]mrpei]

=
1

exp[12(σ − 1)2σ2a]

∫
mrpe · e(σ−1)a

2π
√
σ2aσ

2
mrpe − 2σmrpe,a

e
−(

σ2
mrpea

2+σ2
amrpe2−2σmrpe,aa·mrpe)

2(σ2
aσ2

mrpe−2σmrpe,a) (da)(dmrpe))

= (σ − 1)σmrpe,a

Therefore, V arλ[mrpe]can be written as:

V arλ[mrpe] = Eλ[mrpe2]− (Eλ[mrpe])2 = σ2mrpe

Similarly, we can write

V arλ[mrps] = Eλ[mrps2]− (Eλ[mrps])2 = σ2mrps

Similarly, we compute the covariance:

Covλ[mrpe,mrps] = Eλ[mrpe ·mrps]− Eλ[mrpe]Eλ[mrps]
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where

Eλ[mrpeimrpsi] =
1

exp[12(σ − 1)2σ2a]
E[exp[(σ − 1)ai]mrpeimrpsi]

=
1

exp[12(σ − 1)2σ2a]

∫
mrpe ·mrps · e(σ−1)af(a,mrpe,mrps)(da)(dmrpe)(dmrps)

= σmrpe,mrps + (σ − 1)2σmrpe,aσmrps,a

and
Eλ[mrpe]Eλ[mrps] = (σ − 1)2σmrpe,aσmrps,a.

Simplifying yields
Covλ[mrpe,mrps] = σmrpe,mrps

Therefore, in the structural model, we have that:

∆ log TFP =
(σ − 1)α2α2

E + α(α2
E + γαEαS)

2
σ2mrpe

+
(σ − 1)α2α2

S + α(α2
S + γαEαS)

2
σ2mrps

− ααEαS (γ − σα− (1− α))σmrpe,mrps
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B Details of Data Clean

B.1 Compustat North America

To construct our sample of Compustat North America, we first keep firms in the US (fic ==
USA) and firms using US dollars (curcd == USD). We then keep observations that have a
3-digit NAICS number for the sector identifier. Next, we drop observations with repeated
firm-year pairs. To calibrate the capital share, we link 3-digit NAICS to BEA sector codes
and then use BEA sector shares as the sector-specific firm capital share. To calibrate the
equipment and structures share, we define the equipment share as the ratio of equipment
(FATE) to total fixed assets (PPEGT), and the structures share as one minus the equipment
share. Structures are calculated as total fixed assets minus equipment.

Moreover, we trim our sample using ARPK, ARPE, ARPS, ARPL, capital-labor ratio,
and structures-equipment ratio. We trim 1% from each side of all the above variables in
each year. After trimming our sample, we again drop the observations whose equipment
or structures shares are above 1 or below -1. We show the distribution of shares in our
cleaned sample below.

Figure B.1: US Compustat Shares Distribution

Capital Equipment

Structures
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B.2 Indian ASI

We download the ASI data for each year and append all datasets together to construct a
panel dataset. The ASI panel data contains firm-level production data and panel identi-
fiers. We then harmonize all variable and sector definitions across different survey waves.
For each type of capital (and their sum), we measure the (nominal) net stock of capital by
using the average of the net opening and net closing values. Note that we generate both
(average) gross and (average) net capital values. However, we use net capital values in our
analysis due to better data coverage. Also note that before 2001, there is no ”Category 6:
pollution control assets” collected in the dataset. The harmonized capital variables include
the average net value of land, buildings, plant and machinery, computer equipment, pol-
lution equipment, and all capital assets. We also generate total sales, total material costs,
total labor, and total wages. 44

To clean the sample, we first generate “capital others” as the total fixed assets minus
all other five types of capital. We merge the data with MOSPI to obtain the capital share.
Then, to trim the data, we compute the average revenue product of all six types of capital
and trim the data at 1% on both sides in each year. The distributions of each type of capital
are also shown below.

Figure B.2: Indian ASI Shares Distribution

Capital Land

Buildings Machinery and Plants

44 To harmonize sectoral concordance, we use NIC98 (for data before 2004), NIC04 (for data from 2004 to 2007),
and NIC08 (for data after 2007).
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Transportation Computers

Others

C Elasticity of Equipment and Structure Substitution Estimation

We provide some alternative specifications of the estimation of the elasticity of equipment
and structure substitution. First, we try to use the book values of equipment and structures
instead of the quantity value from perpetual inventory method. Specifically, we run the
following regression

ln


R̂Si(f)tP

S
i(f)t−1Sft

R̂Ei(f)t P
E
i(f)t−1Eft︸ ︷︷ ︸
Book Value

 = (γ − 1) ln

(
REdt
RSdt

)
+ FEs (C.1)

The usage of book value variables are closer to our empirical framework. We also test
if different fixed effects specifications affect our estimation. Moreover, we also test if using
both equipment and structures shift share as IV, or only equipment or structures as the
source of exogenous variation. Finally, we also test if the long-run estimation will change
our results. All alternative results are attached below and our results are qualitatively
stable.

We also test if different fixed effects will deliver various results
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Table C.1: Robustness of Stock and Expenditure Measures

(1) ln BVSit
BVEit

(2) IV (3) ln R̂SdtPSdtKSdit

R̂EdtPEdtKEdit
(4) IV

log re rs -0.10876∗∗∗ -0.36460∗∗∗ -0.70582∗∗∗ -0.31172∗∗∗

(0.02163) (0.06799) (0.02232) (0.06933)

Firm FE Yes Yes Yes Yes

Year FE Yes Yes Yes Yes

Observations 82,104 81,496 82,064 81,460
R2 0.788 -0.006 0.818 0.036
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table C.2: Robustness of Fixed Effects

(1) (2) (3)

log re rs 0.31282∗∗∗ 0.56414∗∗∗ 0.57555∗∗∗

(0.06955) (0.11109) (0.11705)

Firm FE Yes Yes Yes

Year FE Yes No No

NAICS-1 digit by Year FE No Yes Yes

State by Year FE No No Yes

Observations 81,287 81,287 81,179
R2 0.001 -0.006 -0.006
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table C.3: Robustness of the Shifts in IV

(1) E-S shifts (2)Only E price shifts (3) Only S price shifts

log re rs 0.31282∗∗∗ 0.37938∗∗∗ 0.20444∗∗

(0.06955) (0.07499) (0.10361)

Firm FE Yes Yes Yes

Year FE Yes Yes Yes

Observations 81,287 81,884 81,884
R2 0.001 -0.002 0.004
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table C.4: Long-run Elasticity of Capital Substitution: using stock measure

(1) (2) (3) (4) (5)

log re rs 0.31282∗∗∗ 0.13005∗∗∗ 0.26455∗∗∗ 0.32323∗∗∗ 0.20520∗∗

(0.06955) (0.02863) (0.05535) (0.07238) (0.09292)

L.log quantity stock s e 0.62520∗∗∗

(0.00792)

L3.log quantity stock s e 0.28806∗∗∗

(0.01131)

L5.log quantity stock s e 0.12281∗∗∗ 0.13332∗∗∗

(0.01282) (0.01894)

L10.log quantity stock s e -0.04257∗∗∗

(0.01567)

Firm FE Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes

Observations 81,287 69,746 53,276 41,978 22,706
R2 0.001 0.439 0.105 0.019 0.020
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

D Solving the Baseline Structure Model

D.1 Solving the Firm’s Problem

In this section, we provide detail process of solving out structure model. we assume that
now equipment and structures are combined as a capital bundle in a CES fashion:

Yit = Âit

(
α

1
γ

EE
γ−1
γ

it + α
1
γ

S S
γ−1
γ

it

) γ
γ−1

α̂K

N α̂N
it (D.1)

The firm’s labor decision is unchanged compared to the Cobb-Douglas case. Hence,
after optimizing labor choice, firm’s problem is given by

V (Eit, Sit, Iit) = max
Ei,t+1,Si,t+1

Eit

[
GAit

(
α

1
γ

EE
γ−1
γ

it + α
1
γ

S S
γ−1
γ

it

) γ
γ−1

α

− TEi,t+1Ei,t+1(1− β(1− δE))

− Φ (Ei,t+1, Eit)− TSi,t+1Si,t+1(1− β(1− δS))− Φ (Si,t+1, Sit)

]
+ βEit [V (Ei,t+1, Si,t+1, Iit+1)]

where α ≡ αK
1−αN

, αK =
(
1− 1

θ

)
α̂N , αN =

(
1− 1

θ

)
α̂N and Ait ≡ Â

1− 1
θ

1−αN
it . The term G ≡

(1− αN )
(
αN
W

) αN
1−αN Y

1
θ

1
1−αN is a constant when there is no aggregate risk. Combine Euler
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Equation and Envo Thm:

[Eit] : Eit
[
βΠ1 (Eit+1, Sit+1Ait+1)− βΦ2 (Eit+2,Eit+1)− TEit+1 · [1− β (1− δE)]− Φ1 (Eit+1, Eit)

]
= 0

(D.2)

[sit] : Eit
[
βΠ2 (Eit+1, Sit+1, Ait+1)− βΦ2 (Sit+2, Sit+1)− TSit+1 · [1− β (1− δS)]− Φ1 (Sit+1, Sit)

]
= 0

(D.3)

Steady state: we have

• Ait = 1 and TS = TE = 1

• Π1(E,S,A) = GAαα
1
γ

EE
− 1

γ

(
α

1
γ

EE
γ−1
γ + α

1
γ

S S
γ−1
γ

) γ
γ−1

α−1

• Π2(E,S,A) = GAαα
1
γ

S S
− 1

γ

(
α

1
γ

EE
γ−1
γ + α

1
γ

S S
γ−1
γ

) γ
γ−1

α−1

• Φ1(E) = ξ̂EδE , Φ1(S) = ξ̂SδS

• Φ2 (E) = ξ̂E
2 (1− δE)

2 − ξ̂E
2 , Φ2 (S) =

ξ̂S
2 (1− δS)

2 − ξ̂S
2

Plug them back:

β ·Gαα
1
γ

EE
− 1

γ

(
α

1
γ

EE
γ−1
γ + α

1
γ

S S
γ−1
γ

) γ
γ−1

α−1

− β

(
ξ̂E
2

(1− δE)
2 − ξ̂E

2

)
− [1− β(1− δE)]− ξ̂EδE = 0

β ·Gαα
1
γ

S S
− 1

γ

(
α

1
γ

EE
γ−1
γ + α

1
γ

S S
γ−1
γ

) γ
γ−1

α−1

− β

(
ξ̂S
2

(1− δS)
2 − ξ̂S

2

)
− [1− β(1− δS)]− ξ̂SδS = 0

In the steady state,

Y = Yi =

(
α

1
γ

EE
γ−1
γ + α

1
γ

S S
γ−1
γ

) γ
γ−1

α̂K

N α̂N

∣∣∣
N=1,P=1

=

(
α

1
γ

EE
γ−1
γ + α

1
γ

S S
γ−1
γ

) γ
γ−1

α̂K

(D.4)

So the wage will be given by

W = α̂N

(
α

1
γ

EE
γ−1
γ + α

1
γ

S S
γ−1
γ

) γ
γ−1

α̂K

(D.5)

Hence,

G = (1− αN )
(αN
W

) αN
1−αN Y

1
θ

1
1−αN = (1− αN )

(
α

1
γ

EE
γ−1
γ + α

1
γ

S S
γ−1
γ

)αK
γ

γ−1

1
θ
−αN

1−αN

We can easily see that the Euler equations are the same as the Cobb-Douglas function
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case

[Eit] : βΠ1π̃1 (Eit+1, Sit+1, Ait+1)− βΦ2(E)ϕ̃2 (Eit+2, Eit+1)− [1− β (1− δE)] τ̃
E
i,t+1 − Φ1(E)ϕ̃1 (Eit+1, Eit) = 0

(D.6)

[Sit] : βΠ2π̃2 (Eit+1, Sit+1, Ait+1)− βΦ2(S)ϕ̃2 (Sit+2, Sit+1)− [1− β(1− δS)]τ̃
S
i,t+1 − Φ1(S)ϕ̃1 (Sit+1, Sit) = 0

(D.7)

except for constants Π1 and Π2 and variables π̃1 and π̃2. Under the CES production
function, the two steady state variables are given by

Π1 = GAααEE
− 1

γ

(
αEE

γ−1
γ + αSS

γ−1
γ

) γ
γ−1

α−1
(D.8)

Π2 = GAααSS
− 1

γ

(
αEE

γ−1
γ + αSS

γ−1
γ

) γ
γ−1

α−1
(D.9)

Now we apply log linearization on Π1 and Π2 to get π̃1 and π̃2. First, for π̃1

log (Π1 (Ei,t+1, Si,t+1, Ai,t+1)) = log (GααE) + log (Ai,t+1)−
1

γ
log (Eit+1)

+

(
γ

γ − 1
α− 1

)
log

(
αEE

γ−1
γ

it+1 + αSS
γ−1
γ

it+1

)
LHS: = log

(
Π̄1

)
+ π̃1 (Eit+1, Sit+1, Ait+1)

RHS: = log (GααEA) + ãi,t+1 −
1

γ
[log(E) + ẽit+1]

+

(
γ

γ − 1
α− 1

)[
log
(
αEE

γ−1
γ + αSS

γ−1
γ

)
+

αE
γ−1
γ E

γ−1
γ

αEE
γ−1
γ + αSS

γ−1
γ

ẽit+1

+
αS

γ−1
γ S

γ−1
γ

αEE
γ−1
γ + αSS

γ−1
γ

s̃it+1

]

Hence,

βΠ1π̃1 (Eit+1, Sit+1, Ait+1) =βΠ1

[
ãi,t+1 +

( γ

γ − 1
α− 1

)
αE

γ−1
γ E

γ−1
γ

αEE
γ−1
γ + αSS

γ−1
γ

− 1

γ

 ẽit+1

+

(
γ

γ − 1
α− 1

)
αS

γ−1
γ S

γ−1
γ

αEE
γ−1
γ + αSS

γ−1
γ

s̃it+1

]
(D.10)

And similarly, we can derive π̃2 as

βΠ2π̃2 (Eit+1, Sit+1, Ait+1) =βΠ2

[
ãi,t+1 +

(
γ

γ − 1
α− 1

)
αE

γ−1
γ E

γ−1
γ

αEE
γ−1
γ + αSS

γ−1
γ

ẽit+1

+

( γ

γ − 1
α− 1

)
αS

γ−1
γ S

γ−1
γ

αEE
γ−1
γ + αSS

γ−1
γ

− 1

γ

 s̃it+1

]
(D.11)
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For simplicity, we just denote that ΓS =
αS

γ−1
γ
S

γ−1
γ

αEE
γ−1
γ +αSS

γ−1
γ

and ΓE =
αE

γ−1
γ
E

γ−1
γ

αEE
γ−1
γ +αSS

γ−1
γ

.

With all we’ve gotten above, now the firm’s Euler equations are given by

[Eit] :Eit

{
βΠ1

[
ãi,t+1 +

((
γ

γ − 1
α− 1

)
ΓE − 1

γ

)
ẽit+1 +

(
γ

γ − 1
α− 1

)
ΓS s̃it+1

]

+ βξ̂E (ẽit+2 − ẽit+1)− [1− β (1− δE)] τ̃
E
i,t+1 − ξ̂E (ẽi,t+1 − ẽit)

}
= 0 (D.12)

[Sit] :Eit

{
βΠ2

[
ãi,t+1 +

(
γ

γ − 1
α− 1

)
ΓE ẽit+1 +

((
γ

γ − 1
α− 1

)
ΓS − 1

γ

)
s̃it+1

]

+ βξ̂S (s̃it+2 − s̃it+1)− [1− β (1− δS)] τ̃
S
i,t+1 − ξ̂S (s̃i,t+1 − s̃it)

}
= 0 (D.13)

After normalized by βΠ1 and βΠ2, we have

ẽi,t+1

[
(1 + β)ξE −

((
γ

γ − 1
α− 1

)
ΓE − 1

γ

)]
= Eit(ãit+1) + Eit(τ̃ eit+1) + βξEEit(ẽi,t+2)

+

(
γ

γ − 1
α− 1

)
ΓS s̃i,t+1 + ξE ẽi,t (D.14)

s̃i,t+1

[
(1 + β)ξS −

((
γ

γ − 1
α− 1

)
ΓS − 1

γ

)]
= Eit(ãit+1) + Eit(τ̃ sit+1) + βξSEit(s̃i,t+2)

+

(
γ

γ − 1
α− 1

)
ΓE ẽi,t+1 + ξS s̃i,t (D.15)

We can verify that, when γ → 1(
γ

γ − 1
α− 1

)
ΓE − 1

γ
→ ααE − 1(

γ

γ − 1
α− 1

)
ΓS − 1

γ
→ ααS − 1

and this whole system converges back to the Cobb-Douglas case. Eventually, when
we very the elasticity of capital substitution, the curvature of structures and equipment
change. This allows us to use the same methodology to solve the whole model. The system
of solving all parameters in the equipment policy functions is given by
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[1, ẽit] :

[
(1 + β)ξE −

((
γ

γ − 1
α− 1

)
ΓE − 1

γ

)]
· ψE

1 = βξE

[(
ψE
1

)2
+ ψE

2 ψ
S
2

]
+

(
γ

γ − 1
α− 1

)
ΓS · ψS

2 + ξE

[2, s̃it] :

[
(1 + β)ξE −

((
γ

γ − 1
α− 1

)
ΓE − 1

γ

)]
· ψE

2 = βξE
[
ψE
1 · ψE

2 + ψS
1 · ψE

2

]
+

(
γ

γ − 1
α− 1

)
ΓS · ψS

1

[3,Eit(ai,t+1)] :

[
(1 + β)ξE −

((
γ

γ − 1
α− 1

)
ΓE − 1

γ

)]
(1 + γE) · ψE

3 = (1 + γE) + βξE

[
ψE
1 ψ

E
3 (1 + γE)

+ ψE
2 ψ

S
3 (1 + γS) + ψE

3 (1 + γE)ρ

]
+

(
γ

γ − 1
α− 1

)
ΓS(1 + γS) · ψS

3

[4, εEi,t+1] :

[
(1 + β)ξE −

((
γ

γ − 1
α− 1

)
ΓE − 1

γ

)]
· ψE

4 = 1 + βξE
(
ψE
1 ψ

E
4 + ψE

2 ψ
S
5

)
+

(
γ

γ − 1
α− 1

)
ΓSψ

S
5

[5, εSi,t+1] :

[
(1 + β)ξE −

((
γ

γ − 1
α− 1

)
ΓE − 1

γ

)]
· ψE

5 = βξE
(
ψE
1 ψ

E
5 + ψE

2 ψ
S
4

)
+

(
γ

γ − 1
α− 1

)
ΓSψ

S
4

[6, χE
i ] :

[
(1 + β)ξE −

((
γ

γ − 1
α− 1

)
ΓE − 1

γ

)]
· ψE

6 = 1 + βξE
[
ψE
1 ψ

E
6 + ψE

2 ψ
S
7 + ψE

6

]
+

(
γ

γ − 1
α− 1

)
ΓSψ

S
7

[7, χS
i ] :

[
(1 + β)ξE −

((
γ

γ − 1
α− 1

)
ΓE − 1

γ

)]
· ψE

7 = βξE
[
ψE
1 ψ

E
7 + ψE

2 ψ
S
6 + ψE

7

]
+

(
γ

γ − 1
α− 1

)
ΓSψ

S
6

Similarly, for S:

[1, s̃it] :

[
(1 + β)ξS −

((
γ

γ − 1
α− 1

)
ΓS − 1

γ

)]
· ψS

1 = βξS

[(
ψS
1

)2
+ ψE

2 ψ
S
2

]
+

(
γ

γ − 1
α− 1

)
ΓE · ψE

2 + ξS

[2, ẽit] :

[
(1 + β)ξS −

((
γ

γ − 1
α− 1

)
ΓS − 1

γ

)]
· ψS

2 = βξS
[
ψS
1 ψ

S
2 + ψE

1 ψ
S
2

]
+

(
γ

γ − 1
α− 1

)
ΓE · ψE

1

[3,Eit (ai,t+1)] :

[
(1 + β)ξS −

((
γ

γ − 1
α− 1

)
ΓS − 1

γ

)]
(1 + γS) · ψS

3 = (1 + γS) + βξS

[
ρψS

3 (1 + γS)

+ ψS
2 ψ

E
3 (1 + γE) + ψS

1 ψ
S
3 (1 + γS)

]
+

(
γ

γ − 1
α− 1

)
ΓE(1 + γE) · ψE

3

[4, εSi,t+1] :

[
(1 + β)ξS −

((
γ

γ − 1
α− 1

)
ΓS − 1

γ

)]
· ψS

4 = 1 + βξS
(
ψS
1 ψ

S
4 + ψS

2 ψ
E
5

)
+

(
γ

γ − 1
α− 1

)
ΓE · ψE

5

[5, εEi,t+1] :

[
(1 + β)ξS −

((
γ

γ − 1
α− 1

)
ΓS − 1

γ

)]
· ψS

5 = βξS
(
ψS
1 ψ

S
5 + ψS

2 ψ
E
4

)
+

(
γ

γ − 1
α− 1

)
ΓE · ψE

4

[6, χS
i ] :

[
(1 + β)ξS −

((
γ

γ − 1
α− 1

)
ΓS − 1

γ

)]
· ψS

6 = 1 + βξS
[
ψS
1 ψ

S
6 + ψS

2 ψ
E
7 + ψS

6

]
+

(
γ

γ − 1
α− 1

)
ΓE · ψE

7

[7, χE
i ] :

[
(1 + β)ξS −

((
γ

γ − 1
α− 1

)
ΓS − 1

γ

)]
· ψS

7 = βξS
[
ψS
1 ψ

S
7 + ψS

2 ψ
E
6 + ψS

7

]
+

(
γ

γ − 1
α− 1

)
ΓE · ψE

6

We first use [1, E], [1, S], [2, E], [2, S] to solve ψE1 , ψE2 , ψS1 and ψS2 . Then, using [2, E] and
[3, S] to pin down ψE3 , ψS3 . Next, we use [4, E], [5, S], [4, E], [5, S] to solve ψE4 , ψE5 , ψS4 and
ψS5 . Then the rest of four equations unused can pin down ψE6 , ψE7 , ψS6 and ψS7 . In this way,
we do not need to solve 14 different equations in the same time, which provide more loose
situation for identification.

Solving procedure:

(1) We solve ψE1 , ψE2 , ψS1 and ψS2 first. There are no closed form solutions.
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(2) Given ψE1 , ψE2 , ψS1 and ψS2 , we can use E3 and S3 to solve explicitly:

ψE3 =
D2 +M1

D1D2 −M1M2
, ψS3 =

D1 +M2

D1D2 −M1M2
(D.16)

where

D1 = (1 + β)ξE −
((

γ

γ − 1
α− 1

)
ΓE − 1

γ

)
− βξEψ

E
1 − βξEρ (D.17)

D2 = (1 + β)ξS −
((

γ

γ − 1
α− 1

)
ΓS − 1

γ

)
− βξSψ

S
1 − βξSρ (D.18)

M1 =

(
βξEψ

E
2 +

(
γ

γ − 1
α− 1

)
ΓS

)
1 + γS
1 + γE

(D.19)

M2 =

(
βξSψ

S
2 +

(
γ

γ − 1
α− 1

)
ΓE

)
1 + γE
1 + γS

(D.20)

(3) Given ψE1 , ψE2 , ψS1 and ψS2 , we can use E4, S4, E5 and S5 to solve explicitly:

ψE4 =
H2

H1H2 −Q1Q2
, ψS5 =

Q2

H1H2 −Q1Q2
, ψS4 =

H1

H1H2 −Q1Q2
, ψE5 =

Q1

H1H2 −Q1Q2

(D.21)

where

H1 = (1 + β)ξE −
((

γ

γ − 1
α− 1

)
ΓE − 1

γ

)
− βξEψ

E
1 (D.22)

H2 = (1 + β)ξS −
((

γ

γ − 1
α− 1

)
ΓS − 1

γ

)
− βξSψ

S
1 (D.23)

Q1 = βξEψ
E
2 +

(
γ

γ − 1
α− 1

)
ΓS (D.24)

Q2 = βξSψ
S
2 +

(
γ

γ − 1
α− 1

)
ΓE (D.25)

(4) Given ψE1 , ψE2 , ψS1 and ψS2 , we can use E6, S6, E7 and S7 to solve explicitly:

ψE6 =
J2

J1J2 −Q1Q2
, ψS7 =

Q2

J1J2 −Q1Q2
, ψS6 =

J1
J1J2 −Q1Q2

, ψE7 =
Q1

J1J2 −Q1Q2

(D.26)

where

J1 = ξE(1− βψE1 )−
(

γ

γ − 1
α− 1

)
ΓE +

1

γ
(D.27)

J2 = ξS(1− βψS1 )−
(

γ

γ − 1
α− 1

)
ΓS +

1

γ
(D.28)
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D.2 Policy Function Porperties

We use perturbation to solve the model. Specifically, we log-linearize firm’s Euler equa-
tions around their steady states given by Ait = Ā and TEit = TEit = 1:

ẽi,t+1 [(1 + β)ξE + 1− αEα] = Eit(ãit+1) + τ̃Eit+1 + βξEEit(ẽi,t+2) + αSαs̃i,t+1 + ξE ẽi,t (D.29)

s̃i,t+1 [(1 + β)ξS + 1− αSα] = Eit(ãit+1) + τ̃Sit+1 + βξSEit(s̃i,t+2) + αEαẽi,t+1 + ξS s̃i,t (D.30)

where ξE , ξS and τEi,t+1, τ
S
i,t+1 and rescaled versions of the adjustment cost parameters, ξ̂E ,

ξ̂S and the distortion, log TEi,t+1, log T
S
i,t+1, respectively. We use guess and verify method to

solve the two policy functions given below:

ẽi,t+1 = ψE
1 ẽit + ψE

2 s̃it + ψE
3 Eit(ãi,t+1) + ψE

4 ε
E
i,t+1 + ψE

5 ε
S
i,t+1 + ψE

6 χ
E
i + ψE

7 χ
S
i (D.31)

s̃i,t+1 = ψS
1 s̃it + ψS

2 ẽit + ψS
3 Eit(ãi,t+1) + ψS

4 ε
S
i,t+1 + ψS

5 ε
E
i,t+1 + ψS

6 χ
S
i + ψS

7 χ
E
i (D.32)

where ψE1 ∼ ψE7 and ψS1 ∼ ψS7 are undetermined coefficients and can be pinned down by
Euler equations. The solutions of parameters in these policy functions are either no closed
form or tedious in math, so our plan is to discuss the intuition of solving this model, and
then show how each channel of friction affects future equipment and structures invest-
ments.

To solve the entire system, the initial step is to determining
(
ψE1 , ψ

E
2 , ψ

S
1 , ψ

S
2

)
simultane-

ously through a system of quadratic equations. Although there’s no closed-form solution
for these variables, we understand that they are functions of equipment and structure ad-
justment costs, (ξE , ξS). Once these parameters are determined, we can express ψE4 ∼ ψE7
and ψS4 ∼ ψS7 as closed-form solutions derived from them. Finally, ψE3 and ψS3 can be ex-
pressed in closed form with

(
ψE1 , ψ

E
2 , ψ

S
1 , ψ

S
2

)
, along with the correlation between tax-like

distortions and productivity, (γE , γS).
How does each individual friction affect future equipment and structure investments?

We begin by discussing the two adjustment costs, as they appear to be deterministic in the
system, impacting all parameters in the policy functions. We use Figure 10 to illustrate
how variations of equipment adjustment costs can affect parameters in the policy func-
tions. Structure adjustment costs operate in a similar manner, and we include them in the
Appendix A145.

We can see from Figure 10 that, as the cost of adjusting equipment investment (ξE) rises
gradually from 0.1 to 3, the autocorrelation in equipment investment increases. Firms in-
stead tend to invest more in structure since it is relatively less costly to adjust, leading to
a declining correlation between structural stocks in the current and future periods. Mean-
while, ψE2 decreases as the equipment stock in t + 1 is more constrained by the current
equipment stock. For the same reason, ψS2 increases. Furthermore, we can also see that
from Figure 10, ψE3 ∼ ψE7 and ψS3 ∼ ψS7 all decline with increasing equipment adjustment
costs. This decline can be attributed to the fact that higher equipment adjustment costs
lead to more lumpy firm investments in equipment, resulting in less responsiveness to

45 For robustness, we randomly generate all other frictions except for ξ1 or ξ2, as other frictions theoretically
would not affect ψE

1 , ψS
1 , ψE

2 and ψS
2 .
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Figure D.3: How Do Equipment Adjustment Cost Affect Policy Functions?

Note: This graph shows when the equipment adjustment cost varies from 0.1 to 3, how do all parameters
in policy functions change. We randomize the structure adjustment cost, information friction and equip-
ment/structure correlated factors. However, we do limit the structure adjustment cost and information fric-
tion to be positive, and both correlated factors between ±1.

shocks.
Information friction influences investments through firms’ expectations of future pro-

ductivity. The noisier the signal, the lower the learning rate firms will apply to it, leading
them to rely more on current fundamentals for their predictions. Ultimately, the impact of
information friction will manifest in investment through ψE3 and ψS3 . On the other hand,
the correlated factors, γE and γS , will non-trivially influence firm investment in equip-
ment and structures. A positive γE (γS) indicates higher productivity, higher distortion,
and lower investment in equipment (structure), and vice versa. This relationship becomes
clearer when these factors are the only frictions. For instance, the equipment-correlated
factor can independently generate MRPE dispersion proportional to γ2Eσ

2
a. Therefore, the

closer the equipment wedge moves in tandem with productivity, the greater the ex-post
MRPE dispersion. A similar relationship is observed in the case of structure.

Finally, idiosyncratic and permanent shocks will linearly impact firm investments, with
the magnitude of their effects depending on the coefficients in the policy functions. More-
over, there are two forces in our model setting that allow equipment (structure) shocks to
enter into the policy function of structure (equipment). The first one is the Cobb-Douglas
form between equipment and structure that guarantees the nominal values of these two
assets to be in a fixed ratio in production. The second one is the non-zero covariance
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Figure D.4: How Do Structure Adjustment Cost Affect Policy Functions?

Note: This graph shows when the structure adjustment cost varies from 0.1 to 3, how do all parameters
in policy functions change. We randomize the structure adjustment cost, information friction and equip-
ment/structure correlated factors. However, we do limit the structure adjustment cost and information fric-
tion to be positive, and both correlated factors between ±1.

setting in the i.i.d. and permanent shocks. Firm i is aware that both i.i.d. shocks and per-
manent shocks are correlated across different types of capital. Consequently, when firm i

realizes that it faces an unexpected policy burden in the current period, which results in
higher costs for renting a building (structure), it may also anticipate higher expenses when
renting equipment.

D.3 Estimating the Whole System

In this section, we provide the algorithm that we used in the baseline estimation. We first
write down the equipment (structure) policy function, investment growth, productivity
realization and expectation law of motion:
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ẽi,t+1 − ψE3 (1 + γE)Eit(ãi,t+1) = ψE1 ẽit + ψE2 s̃it + ψE4 ϵ
E
i,t+1 + ψE5 ϵ

S
i,t+1 + ψE6 χ

E
i + ψE7 χ

S
i

(D.33)

s̃i,t+1 − ψS3 (1 + γS)Eit(ãi,t+1) = ψS1 s̃it + ψS2 ẽit + ψS4 ϵ
S
i,t+1 + ψS5 ϵ

E
i,t+1 + ψS6 χ

S
i + ψS7 χ

E
i

(D.34)

−ẽi,t+1 + ιEi,t+1 = −1 · ẽit (D.35)

−s̃i,t+1 + ιSi,t+1 = −1 · s̃it (D.36)

ait+1 = ρait + µit+1 (D.37)

Eitait+1 = ρait +

(
1− V

σ2µ

)
µit+1 +

(
1− V

σ2µ

)
eit+1 (D.38)

We construct the matrix system using the above equations as:

BXi,t+1 = CXit +DUi,t+1 (D.39)

B =



1 0 0 0 0 −ψE3 (1 + γE)

0 1 0 0 0 −ψS3 (1 + γS)

−1 0 1 0 0 0

0 −1 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


, Xit+1 =



ẽit+1

s̃it+1

ιEit+1

ιSit+1

ait+1

Eit (ait+1)



C =



ψE1 ψE2 0 0 0 0

ψS2 ψS1 0 0 0 0

−1 0 0 0 0 0

0 −1 0 0 0 0

0 0 0 0 ρ 0

0 0 0 0 ρ 0


, D =



0 0 ψE4 ψE5 ψE6 ψE7
0 0 ψS5 ψS4 ψS7 ψS6
0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0

1− V
σ2
µ

1− V
σ2
µ

0 0 0 0


, Ui,t+1 =



µi,t+1

errori,t+1

εEi,t+1

εSi,t+1

χEi
χSi


D.4 Identification of the Baseline Model

In this section, we discuss the identification for parameters in block two, as identifying
block one and three is straight-forward. Given the complexity of our model, we cannot
solve the model analytically (even with special cases) and obtain the expressions for the
mapping from moments to parameters. Instead, we will implement numerical exercises,
using isomoment curves to illustrate the intuition behind the identification. In Figures
11 and 12, we use isomoment curves to demonstrate how parameters can be uniquely
identified by these moments. In each graph, there is an orange dashed line and a blue line,
each of them representing a moment with a deterministic value. Along these lines, various
combinations of two different parameters of interest are shown. We vary the value of the
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parameter on the horizontal axis and plot the change of another parameter while keeping
the value of the moment fixed.

Figure D.5: Isomoment Curves 1: Quantitative Model

Information Friction and Adjustment Costs In Figure 11, panel A, the orange dashed
line represents the auto-correlation of equipment investment growth rate, while the blue
line depicts the correlation between equipment investment growth rate and the last pro-
ductivity. We then vary the adjustment cost of equipment while keeping ρ∆e,a−1 and
ρ∆e,∆e−1 constant and observe how the signal precision V changes. In the figure, the line
of ρ∆e,∆e−1 is upward sloping, since the larger the equipment adjustment it is, the greater
the ρ∆e,∆e−1 it will be. So in order to keep ρ∆e,∆e−1 constant along with the line, a larger
information friction need to kick in to balance out the effect of the adjustment cost. On the
other side, ρ∆e,a−1 seems to be a good moment to identify V , since for different values of
equipment adjustment cost, the moment implies almost a constant number of information
friction.

Correlated Factors and Information Friction In Figure 11, panel B, we choose ρ∆e,a−1

and ρmrpe,a to discuss the identification issue with the equipment correlated factor, γE ,
and information friction, V . The logic for the moment ρ∆e,a−1 is similar: when γE changes,
ρ∆e,a−1 seems to deliver roughly the same value of information friction. However, when
γE becomes greater, i.e. less negative, firms face less distortions induced by the correlated
factor, so they will react more on fundamental shocks. Hence, in order to keep ρmrpe,a

constant, we need a larger information friction to offset the effect.
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Adjustment Costs and Correlated Factors In Figure 11, panel D we use the correlation
between equipment investment growth and past productivity and correlation between
ARPE and current fundamental to pin down the equipment correlated factor and the ad-
justment cost. For the orange dashed line, as the γE increases, the λarpe,a becomes bigger
as firms react more on their productivity shocks. Hence, we need a greater adjustment cost
ξE to keep this moment stable. On the other hand, when γE increases, firms rely less on
their past fundamentals, so we need a less adjustment cost to fixed this, in a same logic.

Figure D.6: Isomoment Curves 2: Quantitative Model

Correlated Factor and Idiosyncratic Shocks To disentangle correlated and uncorrelated
idiosyncratic shocks, γE and σ2

εE
, in Figure 12 panel B, we plot the isomoment curves

of ρ∆e,∆e−1 and ρmrpe,a. The graph shows that the autocorrelation of investment growth
does not depend on the value of the equipment correlated factor. The ρmrpe,a is down-
ward slopping since larger γE will apparently make the ρmrpe,a greater, so we will need a
smaller variance of the shocks to force firms to react more on the current fundamentals. As
before, this insures that there is a unique combination of equipment correlated factor and
idiosyncratic shock which are consistent with both moments.

Idiosyncratic Matrix Finally, what is left is just how to identify two idiosyncratic shocks
and their covariance for equipment and structure. Since different in their share and adjust-
ment costs, the parameters in front of the two iid shocks are different numerically, allowing
us to pin down each of them with variance of equipment and structure investment growth.
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Finally, after pin down every other parameters in block two, we can simply use the covari-
ance between equipment and structure investment growth to pin down the covariance of
iid shocks, σεEεE .

D.5 How does capital substitutability affects investment behavior?

We now study how capital substitutability affects firm’s investment behavior of different
capitals. In particular, we are interested in how the coefficients of policy functions change
with the elasticity of capital substitution γ under empirically relevant model parameters
and how these changes might affect parameter estimates when we are targeting the fixed
set of moments. To do so, we simulate how these coefficients change with γ in an economy
where adjustment costs (ξE and ξS) are positive and correlated distortions are negative
with γE < γS . All the parameters are empirically relevant and corresponds to the estimates
in Section 7.

We first rewrite the Euler equations to examine the channels through which various
factors affect the investment in each type of capital. Using equipment as an example, the
equilibrium investment decisions can be expressed as the sum of four effects:

eit =Et−1[pit + yit]︸ ︷︷ ︸
size effect

+
1− γ

γ
ΩS (sit − eit)︸ ︷︷ ︸

substitution effect

+
ξE

Π1

(Et−1eit+1 − eit)−
ξE

βΠ1

(eit − eit−1)︸ ︷︷ ︸
adjustment distortion effect

− (1− β (1− δE))

βΠ1

(
γEEt−1[ait] + εEit + χEi

)
︸ ︷︷ ︸

input distortion effect

.

(D.40)

The size effect is intuitive: firms with larger expected sales would invest more in equip-
ment for production. The substitution effect depends on γ: when γ < 1, equipment and
structures are complements, so firms with more structure than equipment (compared to
the steady state) would invest more in equipment to complement the production in equi-
librium. The converse is true for γ > 1. The adjustment and input distortion effects act
as increases in the effective price of equipment, discouraging investment due to higher
marginal adjustment costs and equipment-related distortions.

Adjustment Costs Figure D.7 shows that, all else equal, as γ becomes larger, a firm with
already installed equipment will retain more of its installed equipment (dψ

E
1

dγ > 0) and have

less structure (dψ
S
2

dγ < 0) in the next period. The same conclusion holds for structure as well.

The reason for dψE
1

dγ > 0 is intuitive. As γ becomes larger, all capital inputs become more
substitutable in production such that a firm need not adjust much of its installed equip-
ment to achieve a higher output next period. In other words, a firm would face the same
marginal adjustment cost but a smaller marginal benefit of adjustment. Therefore, more
previously installed equipment would be retained and ψE1 = ∂eit

∂eit−1
would be larger. At

the same time, as inputs are less complementary in production, it becomes less necessary
for the firm to simultaneously own more structure to complement the retained equipment
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Figure D.7: How γ Affects Estimation Results

(a) Estimated Parameters (b) Estimated Policy Function

Note: This figure shows the measured allocative efficiency with heterogeneous techniques.
Figure 5 provides the time series evidence for AE, while Figure 6 shows how AE changes
with different values of the elasticity of capital substitution.

and dψS
2

dγ < 0. The intuition can be best understood in the two limits: as γ → 0, equipment
and structure are perfect complements (Leontief) such that same proportions of structure is
needed to complement the retained equipment in production, i.e., ψE1 = ψS2 . (2) as γ → ∞,
equipment adjustment costs have no bearing on the investment in structure due to perfect
substitutability.

The own adjustment effect leads to an increase in the auto-correlation of capital stock
of each type (ρe,e−1 and ρs,s−1) but a decrease in the auto-correlation of investment of
each type (ρ∆e,∆e−1 and ρ∆s,∆s−1). This is intuitive since as capital stock becomes less
frequently adjusted, investment behaves more like “white noise”. Thus, if we are only
targeting ρ∆e,∆e−1 and ρ∆s,∆s−1, a lower calibrated γ will lead to a smaller estimated ad-
justment costs to rationalize the same auto-correlation in the data. However, notice that a
lower γ < 1 might also leads to an increase in σ2∆e and σ2∆s as well as the correlatedness
of σ2∆e,∆s. Therefore, when targeting all moments, the estimated adjustment cost need not
monotonically decrease.

Correlated Distortions from Productivity We now examine how higher substitutability
between capital types shapes firms’ responses to expected productivity shocks due to cor-
related distortions. Consider an empirically relevant case where γE > γS > 0, such that
a firm facing an expected productivity shock would experience a greater increase in the
effective cost of equipment than that of structures. This intuition is best illustrated in a
case without any friction but with correlated distortions, where we can write:

sit − eit = γ

[
(1− β (1− δE))

βΠ1

γE − (1− β (1− δS))

βΠ1

γS

]
Et−1[ait].
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Since δE > δS , we will have ψS3 − ψE3 = d(sit−eit)
dEt−1[ait]

> 0 as long as γE > γS . Addition-
ally, note that in this case, the substitution effect is stronger when elasticity is larger, such
that d(ψS

3 −ψE
3 )

dγ = 1
βΠ1

[(1− β (1− δE)) γE − (1− β (1− δS)) γS ] > 0. Therefore, when cap-
ital types are more substitutable, a firm would use more structures relative to equipment
when facing the same expected productivity shock. As the direct size effect (and the inter-
action with other channels) of expected productivity on investment quantitatively remains
unchanged with respect to a change in γ, the dominating substitution channel results in
dψS

3
dγ > 0 and dψE

3
dγ < 0.

These movements suggest that as γ becomes smaller, ψE3 becomes larger and ψS3 be-
comes smaller. this would increase ρ∆e,a−1 in the model, but lower ρ∆s,a−1. we would
need to have an increase in γE and a decline in γS to rationalize the ρ∆e,a−1 and ρ∆s,a−1

in the data. Also, a decrease in γ would create a much larger drop in the auto-correlation
of productivity and equipment investment than the increase in the the auto-correlation of
productivity and structures investment. Therefore, this force could overall lead to a de-
cline in information friction V in the estimates, which boosts the transmission of an actual
productivity shocks and the perceived expectation of it, and thus leads to a higher auto-
correlation and rationalize the moment in the data.

Response to Idiosyncratic and Permanent Distortions We now analyze how capital sub-
stitutability affects investment responses, specifically how investment in one type of capi-
tal responds to distortions affecting its own type and other types of capital. Since a firm’s
response to εXit and ξXi is identical in the linearized policy, we will focus on the behavior
of ψE4 ≡ deit

dεEit
and ψE5 ≡ deit

dεSit
. In an economy without adjustment costs, we can write firm’s

equipment investment response to εEit and εSit using Equation 6.13:

deit

dεEit
= α

[
ΩE

deit

dεEit
+ΩS

dsit

dεEit

]
+

1− γ

γ
ΩS

(
dsit

dεEit
− deit

dεEit

)
− 1

= − αΩE
1− α︸ ︷︷ ︸

size effect

+(1− γ)ΩS︸ ︷︷ ︸
substitution effect

−1︸︷︷︸
input

distortion
effect

,

deit

dεSit
= α

[
ΩE

deit

dεSit
+ΩS

dsit

dεSit

]
+

1− γ

γ
ΩS

(
dsit

dεSit
− deit

dεSit

)
= − αΩS

1− α︸ ︷︷ ︸
size effect

−(1− γ)ΩS︸ ︷︷ ︸
substitution effect

.

Notice that the input distortion on equipment acts like an increase in its effective price,
leading to a proportional reduction in equipment demand. Moreover, distortions on any
type of capital increase the firm’s marginal costs and reduce the firm’s size, thereby dis-
couraging equipment investment. Furthermore, γ governs the substitution effect. When
γ < 1, the firm will reduce equipment investment less in response to εEit but might reduce
it more in response to εSit due to the complementarity in production. And the opposite is
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true for the substitute case. Formally,

∂ψE4
∂γ

=
∂
(
∂eit
∂εEit

)
∂γ

= −ΩS < 0, and
∂ψE5
∂γ

=
∂
(
∂eit
∂εSit

)
∂γ

= ΩS > 0,

which shows that as γ increases, the substitution effect causes a reduction in the investment
response of an asset to distortions in the same asset but an increase in the response to
distortions in other assets.

As γ decreases, the own effect increases (but remains < 0), while the cross effect de-
creases (and may or may not be < 0). To match the variance and covariance of the data
moments, we need more volatile distortions in the cross-section and a stronger negative
correlation between distortion types.

E Supplementary Results, Tables and Figures

E.1 SMM Performance

We show our SMM performance in the following table. The Data column shows the mo-
ment values we are targeting. The right column with blue color denotes the moment values
our model generate. As we can see, our model matches the data quite well. In general, the
model matches better in the U.S. than in India. Except for the variance covariance matrix
of investment growth, which aligns closer to the model when γ is larger. 46

In the Tables below, we also show the contribution of each individual channel in US
when moments are changed with different values of γ. From the results we can see that,
regardless of these details of specifications, we can always draw a conclusion that adjust-
ment costs and information friction can not account for the more misalloaction measured
by smaller number of elasticity.

F Baseline Model with Heterogeneous Financial Friction

F.1 Model Set-up and Results

Chaney et al. (2012) documented that a larger share of real estate in a firm’s capital leads
to an increase in their capital expenditure. This indicates that structures might be more
commonly used as collateral compared to equipment. Hence, if collateral constraints act as
costs of production, this empirical pattern could imply that structures are less misallocated
than equipment since there is less liquidity cost associated with holding structures. Yet, it

46 Note that in the baseline results, we show estimations using the same moments. However, similar to our
static measurement framework, different values of γ alter productivity estimates and, subsequently, the
moments. There are two reasons for using fixed moments. First, following the arguments from D. R. Baqaee
and Farhi (2020) and Hulten (1978), productivity changes are independent of elasticity in the first order, and
we solve our model using a first-order approximation. Second, fixing the moments helps us analyze the
mechanism. We provide estimation results as robustness checks.
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Table E.5: SMM Estimation Performance

Description γ = 0.3 γ = 1 γ = 4 Data

ριe,ιe−1
-0.3373 -0.3372 -0.3372 -0.3426

ριs,ιs−1
-0.3382 -0.3364 -0.3364 -0.3302

σ2e 0.0696 0.0687 0.0687 0.0465
σ2s 0.0756 0.0790 0.0790 0.1003
σ2e,s 0.0225 0.0181 0.0181 0.0175
ριe,ιe−1

0.5084 0.5090 0.5090 0.5076
ριs,ιs−1

0.3061 0.3060 0.3060 0.3080
ρarpe,a 0.0961 0.1072 0.1072 0.0914
ρarps,a 0.1036 0.0936 0.0936 0.1082
σ2arpe 0.4193 0.4192 0.4193 0.4193
σ2arps 0.7524 0.7525 0.7524 0.7524
σ2arpe,arps 0.2437 0.2437 0.2437 0.2437

Note: This table shows the matching accuracy be-
tween model and data from the SMM estimation. The
left panel describes its performance in the U.S., and
the right panel is India.

could also be that firms internalize this empirical pattern and hold too many structures and
too few pieces of equipment, making equipment less misallocated compared to structures.

In this section, we extend our baseline model to incorporate the heterogeneous collat-
eral constraints of structures and equipment. For keeping our model tractable, we model
financial frictions as a continuous operation cost and firms need to hold a certain amount
of the liquidity asset with a relatively low exogenous return rate (R < 1

β ). Specifically, the
liquidity cost is given below

Υ(Eit+1, Sit+1, Bit+1) = ν̂Eωe
it+1S

ωs
it+1B

ωb
it+1 (F.1)

where ν̂ is the unit-cost of liquidity cost. ωe and ωs determine how financial costly to
use equipment and structures in firm’s production. Intuitively, both of them are positive
numbers. Similarly, ωb > 0 (< 0) indicates potential cost (benefit) of holding the liquidity
asset. After optimizing the choice of Bit+1, the liquidity cost can be written as:

Υ(Eit+1, Sit+1) = νE
ωe

1−ωb
i,t+1 S

ωs
1−ωb
i,t+1 (F.2)

in which ν is increasing in ν̂. If ωe
1−ωb

> 1 ( ωs
1−ωb

> 1), then the marginal liquidity cost is
increasing with larger equipment (structures) stocks, and vise versa. The detail of model
with heterogeneous collateral constraints are attached in Appendix I.

We need to use firm-level liquidity holdings data together with production-side data to
estimate the heterogeneous collateral constraints David and Venkateswaran (2019). We use
the covariance of firm’s debt holding and equipment (structures) stocks to pin down the
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Table E.6: Contributions of Frictions on arpe (arps) Dispersions with γ = 0.3 (US)

ξE ξS V γE γS σ2
εE σ2

εS σεE ,εS σ2
χE σ2

χS σχE ,χS Total

E 0.05 0.07 0.11 0.02 0.03 1.09 1.28

4.08 5.76 8.40 1.39 1.99 85.47 100.00

S 0.13 0.32 0.04 0.03 3.47 3.64

3.68 0.00 8.84 1.23 0.70 95.25 100.00

Cov −0.04 0.03 −1.36 −1.34

2.69 −1.90 101.38 100.00

TFP 0.01 0.01 0.01 0.02 0.02 −0.00 0.01 0.23 0.19 −0.23 0.26

3.63 3.98 5.07 0.00 7.40 9.55 −0.03 4.33 90.90 74.04 −89.05 100.00

Table E.7: Contributions of Frictions on arpe (arps) Dispersions with γ = 4 (US)

ξE ξS γE γS σ2
εE σ2

εS covε V σ2
χE σ2

χS covχ varape

E 0.05 0.02 0.12 −0.00 0.03 0.26 0.38

13.60 6.23 31.32 −0.04 6.59 68.35 100.00

S 0.03 0.03 0.05 −0.00 0.03 0.28 0.39

6.55 7.21 13.44 −0.11 6.49 72.66 100.00

Cov −0.00 0.03 0.25 0.36

−0.34 6.92 69.62 100.00

TFP 0.02 0.00 0.01 0.00 0.05 0.01 −0.00 0.01 0.09 0.06 −0.03 0.17

11.84 1.70 5.50 1.88 27.62 3.51 −0.01 6.51 51.88 33.73 −15.12 100.00

two numbers in power in the liquidity cost. Specifically, we run the following regression:

log(Bit) = β0 + β1 log(Eit) + β2 log(Sit) + εit (F.3)

where Bit is firm’s debt holding, and Eit and Sit are equipment and structures stock. This
empirical specification is different from Gopinath et al. (2017) whose dependent variable
is the leverage ratio, i.e. B/K, since our stylized financial constraints do not include the
size-dependent factor. We also try to run this regression after taking first difference on all
variables. The results can be found in the Table F.10 below.

From the table we can see that the estimated β̂1 is always smaller than β̂2. This indi-
cates that in average for a firm, its debt holding is more correlated with its structures than
equipment stock. This pattern is consistent when variables are first differenced. Hence, β̂1
and β̂2 will be used as two moments to discipline our model with heterogeneous collateral
constraints. We also match our model with σ2∆mrpe and σ2∆mrps, in order to pin down all
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Table E.8: Contributions of Frictions on arpe (arps) Dispersions with γ = 0.3 (US) with
Corresponding Moments

ξE ξS γE γS σ2
εE σ2

εS covε V σ2
χE σ2

χS covχ varape

E 0.02 0.01 0.01 0.00 0.03 1.05 1.10

1.58 1.09 0.73 0.22 2.30 95.40 100.00

S 0.43 0.00 1.35 0.01 0.03 2.60 2.98

14.43 0.09 45.42 0.42 0.85 87.30 100.00

Cov −0.01 0.03 −1.23 −1.15

0.64 −2.20 106.90 100.00

TFP 0.00 0.03 0.00 0.00 0.00 0.10 0.00 0.01 0.23 0.14 −0.21 0.21

1.46 15.73 1.01 0.10 0.68 48.72 0.01 5.23 106.33 67.40 −97.88 100.00

Table E.9: Contributions of Frictions on arpe (arps) Dispersions with γ = 4 (US) with
Corresponding Moments

ξE ξS γE γS σ2
εE σ2

εS covε V σ2
χE σ2

χS covχ varape

E 0.07 0.01 0.23 0.00 0.02 0.20 0.31

21.38 1.86 75.67 −0.04 5.73 65.57 100.00

S 0.02 0.01 0.06 −0.00 0.02 0.24 0.32

7.35 4.30 18.54 −0.09 5.59 74.67 100.00

Cov −0.00 0.02 0.21 0.29

−0.29 6.01 69.76 100.00

TFP 0.03 0.00 0.00 0.00 0.09 0.01 −0.00 0.01 0.07 0.05 −0.02 0.14

18.30 1.92 1.63 1.13 66.50 4.88 −0.01 5.65 49.59 34.90 −15.14 100.00

four parameters: ωe, ωs, ωb and ν̂. The estimation results are attached in Table F.11.
From the result, ωe > ωb holding the same units of equipment will be more costly

compared to structures for firms. This result is consistent with the empirical results found
in Chaney et al. (2012): when the ratio of real estate is higher in firm’s capital stock, firm’s
investment will be higher as well. Eventually, both empirical and estimation results review
the fact that equipment faces more tighten collateral constraints than structures, so this
collateral constraints heterogeneity is less likely to be able to explain why structures are
more misallocated than equipment.
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Table F.10: Firm’s Debt Holdings and Structures/Equipment Stocks

(1) (2) (3)
log(Structures) 0.308∗∗∗ 0.359∗∗∗

(0.007) (0.009)
log(Equipment) 0.604∗∗∗ 0.586∗∗∗

(0.007) (0.012)
∆ log(Structures) 0.357∗∗∗

(0.012)
∆ log(Equipment) 0.556∗∗∗

(0.018)

Year-Sector Fixed Effect Yes Yes Yes
Firm Fixed Effect No Yes Yes
Observations 55,111 53,928 43,253
R2 0.762 0.907 0.335

F.2 Solving the Model

We first define the liquidity costs as Υ(Ei,t+1, Si,t+1, Bi,t+1) which is given by:

Υ(Eit+1, Sit+1, Bit+1) = ν̂Eωe
i,t+1S

ωs
i,t+1B

ωb
i,t+1

Then, the firm i’s profit maximization problem is given by:

V (Eit, Sit, Bit, Iit) = max
Ei,t+1,Si,t+1,Bi,t+1

Eit

[
GAit (E

αE
it S

αS
it )α +RBit

− TEi,t+1Ei,t+1 (1− β (1− δE))− Φ (Ei,t+1, Eit)

− TSi,t+1Si,t+1 (1− β (1− δS))− Φ (Si,t+1, Sit)

]
−Bi,t+1 −Υ(Eit+1, Sit+1, Bit+1) + βEit [V (Ei,t+1, Si,t+1, Bi,t+1, Iit+1)]

We start to solve this problem by pinning down the optimal decisions for bonds borrowing
or lending (depending if Bit is positive or negative). The first order condition for Bi,t+1

can be expressed as:

[Bi,t+1] : 1− ν̂Eωe
i,t+1S

ωs
i,t+1 · ωbB

ωb−1
i,t+1 = βR

⇒ Bi,t+1 =

[
1− βR

ν̂ωb · Eωe
i,t+1S

ωs
i,t+1

] 1
ωb−1

⇒ Bωb
i,t+1 =

[
1− βR

ν̂ωb · Eωe
i,t+1S

ωs
i,t+1

] ωb
ωb−1
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Table F.11: Financial Constraints Estimation Results

Parameters Description U.S.
ρ Persistence of productivity 0.94
σ2µ Shock to productivity 0.04

ξE Equipment adjustment cost 2.94
ξS Structure adjustment cost 0.63
V Signal precision 0.03
γE Equipment correlated factor −0.21
γS Structure correlated factor −0.29
σ2εE Equipment transitory 0.13
σ2εS Structure transitory 0.01

cov(εE , εS) i.i.d. correlation factor −0.03
σ2χE

Equipment permanent factor 0.24

σ2χS
Structure permanent factor 0.57

cov(χE , χS) correlation factor 0.12
ωe equipment liquidity cost 0.16
ωs structures liquidity cost 0.10
ν̂ liquidity cost unit-cost 0.48
ωb debt liquidity cost 0.73

Note: The table reports the results of SMM estimation.
The number is intentionally kept as two digits. The col-
umn reports the results for the U.S.

Solving the model, the two Euler equations are given by

[Ei,t+1] : Eit

[
(ãi,t+1 + (αEα− 1) ẽi,t+1 + αSαs̃i,t+1) + βξE (ẽit+2 − ẽit+1)

+ τ̃ ei,t+1 − ξE (ẽi,t+1 − ẽit) + Ξeẽi,t+1 + Ξss̃i,t+1

]
= 0 (F.4)

[Si,t+1] : Eit

[
(ãi,t+1 + (αSα− 1) s̃i,t+1 + αEαẽi,t+1)− βξS (s̃it+2 − s̃it+1)

− τ̃ si,t+1 − ξS (s̃i,t+1 − s̃it) + Ωeẽi,t+1 +Ωss̃i,t+1

]
= 0 (F.5)

where Ξe, Ξs, Ωe and Ωs are given by:

Ξe = −
νωe
1−ωb

E
ωe

1−ωb
−1
S

ωs
1−ωb

βGααEEαEα−1SαSα
·
(

ωe
1− ωb

− 1

)
(F.6)

Ξs = −
νωe
1−ωb

E
ωe

1−ωb
−1
S

ωs
1−ωb

βGααEEαEα−1SαSα
·
(

ωs
1− ωb

)
(F.7)

Ωe = −
νωs
1−ωb

E
ωe

1−ωb S
ωs

1−ωb
−1

βGααSEαEαSαSα−1
·
(

ωe
1− ωb

)
(F.8)

Ωs = −
νωs
1−ωb

E
ωe

1−ωb S
ωs

1−ωb
−1

βGααSEαEαSαSα−1
·
(

ωs
1− ωb

− 1

)
(F.9)

82



G Heterogeneous Markups and Technologies

G.1 Motivation and Results

In our baseline model, we assume a constant elasticity of substitution across firm outputs,
as well as homogeneous factor shares in firm production functions. Here, we extend the
model to account for firms having different markups and firm-specific factor shares in
production functions. Specifically, firm i’s cost minimization problem is given by:

min
Eit,Sit,Nit,Mit

REt T
E
it Eit +RSt T

S
itSit +WtT

N
it Nit + PMit Mit

s.t. Yit ≤ AitE
α̂E
itα̂ζ̂

it S
(1−α̂E

it)α̂ζ̂
it N

(1−α̂)ζ̂
it M1−ζ̂

it (G.1)

where α̂Eit and α̂Sit are the equipment and structure share in firm i’s capital bundles. Mit,
PMit and ξ̂ refer to its intermediate input, price and its elasticity. The optimality condition
with respect to the intermediate input Mit simply yields:

PMit =MCit(1− ζ̂)
Yit
Mit

⇒ PMit Mit

PitYit
= (1− ζ̂)

MCit
Pit

(G.2)

which allows us to back out the cross-sectional dispersion in markups using data on inter-
mediate input share of firm’s sales. We follow De Loecker, Eeckhout, and Unger (2020) to
measure the markups using US Compustat and India ASI datasets. We show the detail of
our measurement and math details of firm’s cost minimization problem in Appendix G.

The results show that in the US, the markup dispersion is around 0.07 in our sam-
ple. This indicates that the unobserved markup in our baseline model can explain around
19.4% of MRPE dispesion and 10.7%, which is a sizable effect. However, the heterogeneous
markup does not explain the difference between MRPE and MRPS dispersion. To see this,
the first order conditions (in logarithm) for equipment and structures are given by

[Eit] : log
PitYit
Eit

= log
Pit
MCit

− log α̂Eit + τEit + Constant (G.3)

[Sit] : log
PitYit
Sit

= log
Pit
MCit

− log(1− α̂Eit) + τSit + Constant (G.4)

in which the markup dispersion contributes identically to MRPE and MRPS dispersion.

G.2 Solving Markups

Now we extend firm’s production function to contain intermediate goods. Even though
we assume the equipment and structure share sum up to be one in our baseline model, we
relax this assumption here. When the production function is CES, firm’s problem can be
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rewritten as

min
Eit,Sit,Nit,Mit

REt T
E
it Eit +RSt T

S
itSit +WtT

N
it Nit + PMit Mit

s.t. Yit ≤ Ait

[
α

1
γ

EitE
γ−1
γ

it + α
1
γ

SitS
γ−1
γ

it

] γ
γ−1

α̂ζ̂

N
(1−α̂)ζ̂
it M1−ζ̂

it (G.5)

Write down the Lagrangian

L =REt T
E
it Eit +RSt T

S
itSit +WtT

N
it Nit + PMit Mit (G.6)

− λit ·

(
Ait

[
α

1
γ

EitE
γ−1
γ

it + α
1
γ

SitS
γ−1
γ

it

] γ
γ−1

α̂ζ̂

N
(1−α̂)ζ̂
it M1−ζ̂

it − Yit

)

where we temporarily only allow for factor shares heterogeneity between equipment and
structures. Their first order conditions can be written down as

[Eit] REt T
E
it = λit · α̂ζ̂ ·

Yit
Eit

·
α

1
γ

EitE
γ−1
γ

it

α
1
γ

EitE
γ−1
γ

it + α
1
γ

SitS
γ−1
γ

it

(G.7)

[Sit] RSt T
S
it = λit · α̂ζ̂ ·

Yit
Sit

·
α

1
γ

EitE
γ−1
γ

it

α
1
γ

EitE
γ−1
γ

it + α
1
γ

SitS
γ−1
γ

it

(G.8)

[Nit] WtT
N
it = λit · (1− α̂)ζ̂ · Yit

Nit
(G.9)

[Mit] PMit = λit · (1− ζ̂) · Yit
Mit

(G.10)

The Lagrangian multiplier λit is in fact the marginal cost, and rearrange the FOCs for
equipment and structures

[Eit] REt T
E
it =

MCit
Pit

· α̂ζ̂ · PitYit
Eit

· 1

1 +
(
αSit
αEit

) 1
γ
(
Sit
Eit

) γ−1
γ

(G.11)

[Sit] RSt T
S
it =

MCit
Pit

· α̂ζ̂ · PitYit
Sit

· 1

1 +
(
αEit
αSit

) 1
γ
(
Eit
Sit

) γ−1
γ

(G.12)

Taking log on both sides of these two equations and applying the fact that structures and

84



equipment shares add up to one

[Eit] log(REt ) + τEit = log(
MCit
Pit

) + log(α̂ζ̂) + arpeit − log

(
1 +

(
1− αEit
αEit

) 1
γ
(
Sit
Eit

) γ−1
γ

)
(G.13)

[Sit] log(RSt ) + τSit = log(
MCit
Pit

) + log(α̂ζ̂) + arpsit − log

(
1 +

(
1− αSit
αSit

) 1
γ
(
Eit
Sit

) γ−1
γ

)
(G.14)

Notice that compared to the Cobb-Douglas case, we still need to deal with the ratio of
structures and equipment input. Denoting the share as κit = Sit

Eit
and rearrange and talk

log linearization

[Eit] arpeit − log(
Pit
MCit

) = τEit + log

(
1 +

(
1− αEit
αEit

) 1
γ

κ
γ−1
γ

it

)
+ constant

≈ τ̃E +

1
γκ

γ−1
γ

(
1− 1

αE

) 1
γ
−1

1
αE

1 +
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γ
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γ
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− 1
) 1

γ
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(
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(G.15)

[Sit] arpsit − log(
Pit
MCit

) = τSit + log

(
1 +

(
1− αEit
αEit

)− 1
γ

κ
γ−1
γ

it

)
+ constant

≈ τ̃S +
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γκ

γ−1
γ

(
1
αE

− 1
) 1

γ
−1

1
αE

1 +
(
1−αE
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(
1
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γ
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(
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) 1
γ
κ

γ−1
γ
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(G.16)

where κ and αE are corresponding steady states. With pre-determined parameters and γ,
we also need to compute κ̃it from the data. Rest of the logic will be very similar to the
Cobb-Douglas case. Specifically, both

ãrpeit = arpeit − log(
Pit
MCit

)−
(1− 1

γ )κ
1− 1

γ

(
1
αE

− 1
) 1

γ

1 +
(
1−αE
αE

) 1
γ
κ

γ−1
γ

κ̃it (G.17)

ãrpsit = arpsit − log(
Pit
MCit

)−
(1− 1

γ )κ
1− 1

γ

(
1
αE

− 1
)− 1

γ

1 +
(
1−αE
αE

) 1
γ
κ

γ−1
γ

κ̃it (G.18)

need to be inferred from the dataset.
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Alternative Method 1 Following Hsieh and Klenow (2009), we can implement an extra
assumption, τEit = τNit or τSit = τNit , which implies

arpeit − arpnit =

1
γκ

γ−1
γ

(
1− 1

αE

) 1
γ
−1

1
αE

1 +
(
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γ−1
γ

α̃Eit +
(1− 1

γ )κ
1− 1

γ

(
1
αE

− 1
) 1

γ

1 +
(
1−αE
αE

) 1
γ
κ

γ−1
γ

κ̃it + constant

(G.19)

or

arpsit − arpnit =

1
γκ

γ−1
γ

(
1
αE

− 1
) 1

γ
−1

1
αE

1 +
(
1−αE
αE

)− 1
γ
κ

γ−1
γ

α̃Eit +
(1− 1

γ )κ
1− 1

γ

(
1
αE

− 1
)− 1

γ

1 +
(
1−αE
αE

) 1
γ
κ

γ−1
γ

κ̃it + constant

(G.20)

and we can compute using the data.

Alternative Method 2 We can also assume a equipment specific productivity component,
and estimate the Hisk-neutral and equipment specific productivity jointly from the dataset.
Then, we re-estimate the model to evaluate the contribution of it.

86


	Introduction
	Measuring Misallocation with Capital Heterogeneity
	Baseline Model: One-sector Economy
	Efficient Allocation and Two Measures of Misallocation
	Measurement Primitives and Conventions
	Main Theoretical Results: Measured Misallocation with Capital Heterogeneity
	Measurements in the Multi-sector Economy

	Firm-level Data and Inferring Allocative Efficiency
	Three Main Datasets
	Inferring Allocative Efficiency

	Estimation of the Elasticity of Capital Substitution  
	Estimation Approach
	Data and Construction of User Costs and Capital Quantities
	Estimation Results

	Measuring Misallocation under Capital Heterogeneity in Data
	Homogeneous Capital vs. Heterogeneous Capital
	Measured Misallocation and the Elasticity of Capital Substitution
	Underestimation of Misallocation in the Global Sample
	The Decomposition of Misallocation by Capital Types

	A Firm Dynamics Model with Two Types of Capital
	Model Set-up: Extending the Static Framework
	Solving the Model

	Quantitative Analysis: Capital-Specific Misallocation Decomposition
	Calibration and Moments
	Results of Estimation: What Contributes to the Additional Misallocation?
	Which Sources Make Structures More Misallocated?

	Candidates in the Residual Distortions
	Heterogeneous Financial Frictions
	Tax: ``Bonus" Depreciation
	Contribution of Heterogeneous Techniques to Misallocation
	Measurement Errors
	Robustness: Estimating with Varied Moments
	Robustness: Estimation Using India ASI Data

	Conclusions
	Appendices
	Measurement Framework with Multiple Types of Capital
	Static Measurement Framework
	Example: Cobb-Douglas Special Case =1
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Proposition 1
	Proof of Corollary 1
	Proof of Proposition 2
	Derivation of the Welfare Cost Formula
	Welfare Costs in the Structural Model

	Details of Data Clean
	Compustat North America
	Indian ASI

	Elasticity of Equipment and Structure Substitution Estimation 
	Solving the Baseline Structure Model
	Solving the Firm's Problem
	Policy Function Porperties
	Estimating the Whole System
	Identification of the Baseline Model
	How does capital substitutability affects investment behavior?  

	Supplementary Results, Tables and Figures
	SMM Performance

	Baseline Model with Heterogeneous Financial Friction
	Model Set-up and Results
	Solving the Model

	Heterogeneous Markups and Technologies
	Motivation and Results
	Solving Markups


